Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

125-3s^{2}+3s-9
Calculate 5 to the power of 3 and get 125.
116-3s^{2}+3s
Subtract 9 from 125 to get 116.
factor(125-3s^{2}+3s-9)
Calculate 5 to the power of 3 and get 125.
factor(116-3s^{2}+3s)
Subtract 9 from 125 to get 116.
-3s^{2}+3s+116=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
s=\frac{-3±\sqrt{3^{2}-4\left(-3\right)\times 116}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
s=\frac{-3±\sqrt{9-4\left(-3\right)\times 116}}{2\left(-3\right)}
Square 3.
s=\frac{-3±\sqrt{9+12\times 116}}{2\left(-3\right)}
Multiply -4 times -3.
s=\frac{-3±\sqrt{9+1392}}{2\left(-3\right)}
Multiply 12 times 116.
s=\frac{-3±\sqrt{1401}}{2\left(-3\right)}
Add 9 to 1392.
s=\frac{-3±\sqrt{1401}}{-6}
Multiply 2 times -3.
s=\frac{\sqrt{1401}-3}{-6}
Now solve the equation s=\frac{-3±\sqrt{1401}}{-6} when ± is plus. Add -3 to \sqrt{1401}.
s=-\frac{\sqrt{1401}}{6}+\frac{1}{2}
Divide -3+\sqrt{1401} by -6.
s=\frac{-\sqrt{1401}-3}{-6}
Now solve the equation s=\frac{-3±\sqrt{1401}}{-6} when ± is minus. Subtract \sqrt{1401} from -3.
s=\frac{\sqrt{1401}}{6}+\frac{1}{2}
Divide -3-\sqrt{1401} by -6.
-3s^{2}+3s+116=-3\left(s-\left(-\frac{\sqrt{1401}}{6}+\frac{1}{2}\right)\right)\left(s-\left(\frac{\sqrt{1401}}{6}+\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{2}-\frac{\sqrt{1401}}{6} for x_{1} and \frac{1}{2}+\frac{\sqrt{1401}}{6} for x_{2}.