Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

25-a^{2}=7^{2}-\left(8-a\right)^{2}
Calculate 5 to the power of 2 and get 25.
25-a^{2}=49-\left(8-a\right)^{2}
Calculate 7 to the power of 2 and get 49.
25-a^{2}=49-\left(64-16a+a^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-a\right)^{2}.
25-a^{2}=49-64+16a-a^{2}
To find the opposite of 64-16a+a^{2}, find the opposite of each term.
25-a^{2}=-15+16a-a^{2}
Subtract 64 from 49 to get -15.
25-a^{2}-16a=-15-a^{2}
Subtract 16a from both sides.
25-a^{2}-16a+a^{2}=-15
Add a^{2} to both sides.
25-16a=-15
Combine -a^{2} and a^{2} to get 0.
-16a=-15-25
Subtract 25 from both sides.
-16a=-40
Subtract 25 from -15 to get -40.
a=\frac{-40}{-16}
Divide both sides by -16.
a=\frac{5}{2}
Reduce the fraction \frac{-40}{-16} to lowest terms by extracting and canceling out -8.