Solve for a
a = \frac{5}{2} = 2\frac{1}{2} = 2.5
Share
Copied to clipboard
25-a^{2}=7^{2}-\left(8-a\right)^{2}
Calculate 5 to the power of 2 and get 25.
25-a^{2}=49-\left(8-a\right)^{2}
Calculate 7 to the power of 2 and get 49.
25-a^{2}=49-\left(64-16a+a^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-a\right)^{2}.
25-a^{2}=49-64+16a-a^{2}
To find the opposite of 64-16a+a^{2}, find the opposite of each term.
25-a^{2}=-15+16a-a^{2}
Subtract 64 from 49 to get -15.
25-a^{2}-16a=-15-a^{2}
Subtract 16a from both sides.
25-a^{2}-16a+a^{2}=-15
Add a^{2} to both sides.
25-16a=-15
Combine -a^{2} and a^{2} to get 0.
-16a=-15-25
Subtract 25 from both sides.
-16a=-40
Subtract 25 from -15 to get -40.
a=\frac{-40}{-16}
Divide both sides by -16.
a=\frac{5}{2}
Reduce the fraction \frac{-40}{-16} to lowest terms by extracting and canceling out -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}