Solve for x
x=-1
Solve for x (complex solution)
x=\frac{\pi n_{1}i}{\ln(6)}-1
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
36\times 5^{2}\left(3^{0}+6^{2x}\right)=25\times 36+25
Multiply both sides of the equation by 36.
36\times 25\left(3^{0}+6^{2x}\right)=25\times 36+25
Calculate 5 to the power of 2 and get 25.
900\left(3^{0}+6^{2x}\right)=25\times 36+25
Multiply 36 and 25 to get 900.
900\left(1+6^{2x}\right)=25\times 36+25
Calculate 3 to the power of 0 and get 1.
900+900\times 6^{2x}=25\times 36+25
Use the distributive property to multiply 900 by 1+6^{2x}.
900+900\times 6^{2x}=900+25
Multiply 25 and 36 to get 900.
900+900\times 6^{2x}=925
Add 900 and 25 to get 925.
900\times 6^{2x}+900=925
Use the rules of exponents and logarithms to solve the equation.
900\times 6^{2x}=25
Subtract 900 from both sides of the equation.
6^{2x}=\frac{1}{36}
Divide both sides by 900.
\log(6^{2x})=\log(\frac{1}{36})
Take the logarithm of both sides of the equation.
2x\log(6)=\log(\frac{1}{36})
The logarithm of a number raised to a power is the power times the logarithm of the number.
2x=\frac{\log(\frac{1}{36})}{\log(6)}
Divide both sides by \log(6).
2x=\log_{6}\left(\frac{1}{36}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=-\frac{2}{2}
Divide both sides by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}