Evaluate
\frac{5}{2}=2.5
Factor
\frac{5}{2} = 2\frac{1}{2} = 2.5
Share
Copied to clipboard
25\left(-\frac{1}{5}\right)^{2}+2^{3}\left(-\frac{1}{2}\right)^{4}-\left(-1\right)^{15}
Calculate 5 to the power of 2 and get 25.
25\times \frac{1}{25}+2^{3}\left(-\frac{1}{2}\right)^{4}-\left(-1\right)^{15}
Calculate -\frac{1}{5} to the power of 2 and get \frac{1}{25}.
1+2^{3}\left(-\frac{1}{2}\right)^{4}-\left(-1\right)^{15}
Cancel out 25 and 25.
1+8\left(-\frac{1}{2}\right)^{4}-\left(-1\right)^{15}
Calculate 2 to the power of 3 and get 8.
1+8\times \frac{1}{16}-\left(-1\right)^{15}
Calculate -\frac{1}{2} to the power of 4 and get \frac{1}{16}.
1+\frac{8}{16}-\left(-1\right)^{15}
Multiply 8 and \frac{1}{16} to get \frac{8}{16}.
1+\frac{1}{2}-\left(-1\right)^{15}
Reduce the fraction \frac{8}{16} to lowest terms by extracting and canceling out 8.
\frac{2}{2}+\frac{1}{2}-\left(-1\right)^{15}
Convert 1 to fraction \frac{2}{2}.
\frac{2+1}{2}-\left(-1\right)^{15}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{3}{2}-\left(-1\right)^{15}
Add 2 and 1 to get 3.
\frac{3}{2}-\left(-1\right)
Calculate -1 to the power of 15 and get -1.
\frac{3}{2}+1
The opposite of -1 is 1.
\frac{3}{2}+\frac{2}{2}
Convert 1 to fraction \frac{2}{2}.
\frac{3+2}{2}
Since \frac{3}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
\frac{5}{2}
Add 3 and 2 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}