Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

25=\left(7-x\right)^{2}+\left(5-x\right)^{2}
Calculate 5 to the power of 2 and get 25.
25=49-14x+x^{2}+\left(5-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-x\right)^{2}.
25=49-14x+x^{2}+25-10x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-x\right)^{2}.
25=74-14x+x^{2}-10x+x^{2}
Add 49 and 25 to get 74.
25=74-24x+x^{2}+x^{2}
Combine -14x and -10x to get -24x.
25=74-24x+2x^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
74-24x+2x^{2}=25
Swap sides so that all variable terms are on the left hand side.
74-24x+2x^{2}-25=0
Subtract 25 from both sides.
49-24x+2x^{2}=0
Subtract 25 from 74 to get 49.
2x^{2}-24x+49=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 2\times 49}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -24 for b, and 49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 2\times 49}}{2\times 2}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-8\times 49}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-24\right)±\sqrt{576-392}}{2\times 2}
Multiply -8 times 49.
x=\frac{-\left(-24\right)±\sqrt{184}}{2\times 2}
Add 576 to -392.
x=\frac{-\left(-24\right)±2\sqrt{46}}{2\times 2}
Take the square root of 184.
x=\frac{24±2\sqrt{46}}{2\times 2}
The opposite of -24 is 24.
x=\frac{24±2\sqrt{46}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{46}+24}{4}
Now solve the equation x=\frac{24±2\sqrt{46}}{4} when ± is plus. Add 24 to 2\sqrt{46}.
x=\frac{\sqrt{46}}{2}+6
Divide 24+2\sqrt{46} by 4.
x=\frac{24-2\sqrt{46}}{4}
Now solve the equation x=\frac{24±2\sqrt{46}}{4} when ± is minus. Subtract 2\sqrt{46} from 24.
x=-\frac{\sqrt{46}}{2}+6
Divide 24-2\sqrt{46} by 4.
x=\frac{\sqrt{46}}{2}+6 x=-\frac{\sqrt{46}}{2}+6
The equation is now solved.
25=\left(7-x\right)^{2}+\left(5-x\right)^{2}
Calculate 5 to the power of 2 and get 25.
25=49-14x+x^{2}+\left(5-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-x\right)^{2}.
25=49-14x+x^{2}+25-10x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-x\right)^{2}.
25=74-14x+x^{2}-10x+x^{2}
Add 49 and 25 to get 74.
25=74-24x+x^{2}+x^{2}
Combine -14x and -10x to get -24x.
25=74-24x+2x^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
74-24x+2x^{2}=25
Swap sides so that all variable terms are on the left hand side.
-24x+2x^{2}=25-74
Subtract 74 from both sides.
-24x+2x^{2}=-49
Subtract 74 from 25 to get -49.
2x^{2}-24x=-49
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-24x}{2}=-\frac{49}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{24}{2}\right)x=-\frac{49}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-12x=-\frac{49}{2}
Divide -24 by 2.
x^{2}-12x+\left(-6\right)^{2}=-\frac{49}{2}+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=-\frac{49}{2}+36
Square -6.
x^{2}-12x+36=\frac{23}{2}
Add -\frac{49}{2} to 36.
\left(x-6\right)^{2}=\frac{23}{2}
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{\frac{23}{2}}
Take the square root of both sides of the equation.
x-6=\frac{\sqrt{46}}{2} x-6=-\frac{\sqrt{46}}{2}
Simplify.
x=\frac{\sqrt{46}}{2}+6 x=-\frac{\sqrt{46}}{2}+6
Add 6 to both sides of the equation.