Solve for x
x=\frac{1}{5}=0.2
x=-\frac{1}{5}=-0.2
Graph
Share
Copied to clipboard
6103515625x^{2}-5^{12}=0
Calculate 5 to the power of 14 and get 6103515625.
6103515625x^{2}-244140625=0
Calculate 5 to the power of 12 and get 244140625.
25x^{2}-1=0
Divide both sides by 244140625.
\left(5x-1\right)\left(5x+1\right)=0
Consider 25x^{2}-1. Rewrite 25x^{2}-1 as \left(5x\right)^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{5} x=-\frac{1}{5}
To find equation solutions, solve 5x-1=0 and 5x+1=0.
6103515625x^{2}-5^{12}=0
Calculate 5 to the power of 14 and get 6103515625.
6103515625x^{2}-244140625=0
Calculate 5 to the power of 12 and get 244140625.
6103515625x^{2}=244140625
Add 244140625 to both sides. Anything plus zero gives itself.
x^{2}=\frac{244140625}{6103515625}
Divide both sides by 6103515625.
x^{2}=\frac{1}{25}
Reduce the fraction \frac{244140625}{6103515625} to lowest terms by extracting and canceling out 244140625.
x=\frac{1}{5} x=-\frac{1}{5}
Take the square root of both sides of the equation.
6103515625x^{2}-5^{12}=0
Calculate 5 to the power of 14 and get 6103515625.
6103515625x^{2}-244140625=0
Calculate 5 to the power of 12 and get 244140625.
x=\frac{0±\sqrt{0^{2}-4\times 6103515625\left(-244140625\right)}}{2\times 6103515625}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6103515625 for a, 0 for b, and -244140625 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6103515625\left(-244140625\right)}}{2\times 6103515625}
Square 0.
x=\frac{0±\sqrt{-24414062500\left(-244140625\right)}}{2\times 6103515625}
Multiply -4 times 6103515625.
x=\frac{0±\sqrt{5960464477539062500}}{2\times 6103515625}
Multiply -24414062500 times -244140625.
x=\frac{0±2441406250}{2\times 6103515625}
Take the square root of 5960464477539062500.
x=\frac{0±2441406250}{12207031250}
Multiply 2 times 6103515625.
x=\frac{1}{5}
Now solve the equation x=\frac{0±2441406250}{12207031250} when ± is plus. Reduce the fraction \frac{2441406250}{12207031250} to lowest terms by extracting and canceling out 2441406250.
x=-\frac{1}{5}
Now solve the equation x=\frac{0±2441406250}{12207031250} when ± is minus. Reduce the fraction \frac{-2441406250}{12207031250} to lowest terms by extracting and canceling out 2441406250.
x=\frac{1}{5} x=-\frac{1}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}