Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6103515625x^{2}-5^{12}=0
Calculate 5 to the power of 14 and get 6103515625.
6103515625x^{2}-244140625=0
Calculate 5 to the power of 12 and get 244140625.
25x^{2}-1=0
Divide both sides by 244140625.
\left(5x-1\right)\left(5x+1\right)=0
Consider 25x^{2}-1. Rewrite 25x^{2}-1 as \left(5x\right)^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{5} x=-\frac{1}{5}
To find equation solutions, solve 5x-1=0 and 5x+1=0.
6103515625x^{2}-5^{12}=0
Calculate 5 to the power of 14 and get 6103515625.
6103515625x^{2}-244140625=0
Calculate 5 to the power of 12 and get 244140625.
6103515625x^{2}=244140625
Add 244140625 to both sides. Anything plus zero gives itself.
x^{2}=\frac{244140625}{6103515625}
Divide both sides by 6103515625.
x^{2}=\frac{1}{25}
Reduce the fraction \frac{244140625}{6103515625} to lowest terms by extracting and canceling out 244140625.
x=\frac{1}{5} x=-\frac{1}{5}
Take the square root of both sides of the equation.
6103515625x^{2}-5^{12}=0
Calculate 5 to the power of 14 and get 6103515625.
6103515625x^{2}-244140625=0
Calculate 5 to the power of 12 and get 244140625.
x=\frac{0±\sqrt{0^{2}-4\times 6103515625\left(-244140625\right)}}{2\times 6103515625}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6103515625 for a, 0 for b, and -244140625 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6103515625\left(-244140625\right)}}{2\times 6103515625}
Square 0.
x=\frac{0±\sqrt{-24414062500\left(-244140625\right)}}{2\times 6103515625}
Multiply -4 times 6103515625.
x=\frac{0±\sqrt{5960464477539062500}}{2\times 6103515625}
Multiply -24414062500 times -244140625.
x=\frac{0±2441406250}{2\times 6103515625}
Take the square root of 5960464477539062500.
x=\frac{0±2441406250}{12207031250}
Multiply 2 times 6103515625.
x=\frac{1}{5}
Now solve the equation x=\frac{0±2441406250}{12207031250} when ± is plus. Reduce the fraction \frac{2441406250}{12207031250} to lowest terms by extracting and canceling out 2441406250.
x=-\frac{1}{5}
Now solve the equation x=\frac{0±2441406250}{12207031250} when ± is minus. Reduce the fraction \frac{-2441406250}{12207031250} to lowest terms by extracting and canceling out 2441406250.
x=\frac{1}{5} x=-\frac{1}{5}
The equation is now solved.