Solve for b
b=\frac{1}{2}=0.5
Share
Copied to clipboard
5\left(7-30+5b\right)-7=7\left(5\left(7b-6\right)+4\right)-50
Use the distributive property to multiply -5 by 6-b.
5\left(-23+5b\right)-7=7\left(5\left(7b-6\right)+4\right)-50
Subtract 30 from 7 to get -23.
-115+25b-7=7\left(5\left(7b-6\right)+4\right)-50
Use the distributive property to multiply 5 by -23+5b.
-122+25b=7\left(5\left(7b-6\right)+4\right)-50
Subtract 7 from -115 to get -122.
-122+25b=7\left(35b-30+4\right)-50
Use the distributive property to multiply 5 by 7b-6.
-122+25b=7\left(35b-26\right)-50
Add -30 and 4 to get -26.
-122+25b=245b-182-50
Use the distributive property to multiply 7 by 35b-26.
-122+25b=245b-232
Subtract 50 from -182 to get -232.
-122+25b-245b=-232
Subtract 245b from both sides.
-122-220b=-232
Combine 25b and -245b to get -220b.
-220b=-232+122
Add 122 to both sides.
-220b=-110
Add -232 and 122 to get -110.
b=\frac{-110}{-220}
Divide both sides by -220.
b=\frac{1}{2}
Reduce the fraction \frac{-110}{-220} to lowest terms by extracting and canceling out -110.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}