Solve for x
x=-\frac{2x_{1}}{45}+\frac{1}{9}
Solve for x_1
x_{1}=\frac{5-45x}{2}
Graph
Share
Copied to clipboard
5=2x_{1}+45x
Combine x_{1} and x_{1} to get 2x_{1}.
2x_{1}+45x=5
Swap sides so that all variable terms are on the left hand side.
45x=5-2x_{1}
Subtract 2x_{1} from both sides.
\frac{45x}{45}=\frac{5-2x_{1}}{45}
Divide both sides by 45.
x=\frac{5-2x_{1}}{45}
Dividing by 45 undoes the multiplication by 45.
x=-\frac{2x_{1}}{45}+\frac{1}{9}
Divide -2x_{1}+5 by 45.
5=2x_{1}+45x
Combine x_{1} and x_{1} to get 2x_{1}.
2x_{1}+45x=5
Swap sides so that all variable terms are on the left hand side.
2x_{1}=5-45x
Subtract 45x from both sides.
\frac{2x_{1}}{2}=\frac{5-45x}{2}
Divide both sides by 2.
x_{1}=\frac{5-45x}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}