Solve for a
a=\frac{b}{5}-\frac{13}{25}
Solve for b
b=5a+\frac{13}{5}
Share
Copied to clipboard
5=a\times 25+b\left(-5\right)+18
Calculate -5 to the power of 2 and get 25.
a\times 25+b\left(-5\right)+18=5
Swap sides so that all variable terms are on the left hand side.
a\times 25+18=5-b\left(-5\right)
Subtract b\left(-5\right) from both sides.
a\times 25=5-b\left(-5\right)-18
Subtract 18 from both sides.
a\times 25=5+5b-18
Multiply -1 and -5 to get 5.
a\times 25=-13+5b
Subtract 18 from 5 to get -13.
25a=5b-13
The equation is in standard form.
\frac{25a}{25}=\frac{5b-13}{25}
Divide both sides by 25.
a=\frac{5b-13}{25}
Dividing by 25 undoes the multiplication by 25.
a=\frac{b}{5}-\frac{13}{25}
Divide -13+5b by 25.
5=a\times 25+b\left(-5\right)+18
Calculate -5 to the power of 2 and get 25.
a\times 25+b\left(-5\right)+18=5
Swap sides so that all variable terms are on the left hand side.
b\left(-5\right)+18=5-a\times 25
Subtract a\times 25 from both sides.
b\left(-5\right)=5-a\times 25-18
Subtract 18 from both sides.
b\left(-5\right)=5-25a-18
Multiply -1 and 25 to get -25.
b\left(-5\right)=-13-25a
Subtract 18 from 5 to get -13.
-5b=-25a-13
The equation is in standard form.
\frac{-5b}{-5}=\frac{-25a-13}{-5}
Divide both sides by -5.
b=\frac{-25a-13}{-5}
Dividing by -5 undoes the multiplication by -5.
b=5a+\frac{13}{5}
Divide -13-25a by -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}