Solve for K
K=-\frac{4T}{5}+4
Solve for T
T=-\frac{5K}{4}+5
Share
Copied to clipboard
1.25K+T=5
Swap sides so that all variable terms are on the left hand side.
1.25K=5-T
Subtract T from both sides.
\frac{1.25K}{1.25}=\frac{5-T}{1.25}
Divide both sides of the equation by 1.25, which is the same as multiplying both sides by the reciprocal of the fraction.
K=\frac{5-T}{1.25}
Dividing by 1.25 undoes the multiplication by 1.25.
K=-\frac{4T}{5}+4
Divide 5-T by 1.25 by multiplying 5-T by the reciprocal of 1.25.
1.25K+T=5
Swap sides so that all variable terms are on the left hand side.
T=5-1.25K
Subtract 1.25K from both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}