Skip to main content
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

-y^{2}+4y=5
Swap sides so that all variable terms are on the left hand side.
-y^{2}+4y-5=0
Subtract 5 from both sides.
y=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-4±\sqrt{16-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}
Square 4.
y=\frac{-4±\sqrt{16+4\left(-5\right)}}{2\left(-1\right)}
Multiply -4 times -1.
y=\frac{-4±\sqrt{16-20}}{2\left(-1\right)}
Multiply 4 times -5.
y=\frac{-4±\sqrt{-4}}{2\left(-1\right)}
Add 16 to -20.
y=\frac{-4±2i}{2\left(-1\right)}
Take the square root of -4.
y=\frac{-4±2i}{-2}
Multiply 2 times -1.
y=\frac{-4+2i}{-2}
Now solve the equation y=\frac{-4±2i}{-2} when ± is plus. Add -4 to 2i.
y=2-i
Divide -4+2i by -2.
y=\frac{-4-2i}{-2}
Now solve the equation y=\frac{-4±2i}{-2} when ± is minus. Subtract 2i from -4.
y=2+i
Divide -4-2i by -2.
y=2-i y=2+i
The equation is now solved.
-y^{2}+4y=5
Swap sides so that all variable terms are on the left hand side.
\frac{-y^{2}+4y}{-1}=\frac{5}{-1}
Divide both sides by -1.
y^{2}+\frac{4}{-1}y=\frac{5}{-1}
Dividing by -1 undoes the multiplication by -1.
y^{2}-4y=\frac{5}{-1}
Divide 4 by -1.
y^{2}-4y=-5
Divide 5 by -1.
y^{2}-4y+\left(-2\right)^{2}=-5+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-4y+4=-5+4
Square -2.
y^{2}-4y+4=-1
Add -5 to 4.
\left(y-2\right)^{2}=-1
Factor y^{2}-4y+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-2\right)^{2}}=\sqrt{-1}
Take the square root of both sides of the equation.
y-2=i y-2=-i
Simplify.
y=2+i y=2-i
Add 2 to both sides of the equation.