5 = ( 1 + 9.6 \% ) ^ { n }
Solve for n
n=\log_{1.096}\left(5\right)\approx 17.557404545
Share
Copied to clipboard
5=\left(1+\frac{96}{1000}\right)^{n}
Expand \frac{9.6}{100} by multiplying both numerator and the denominator by 10.
5=\left(1+\frac{12}{125}\right)^{n}
Reduce the fraction \frac{96}{1000} to lowest terms by extracting and canceling out 8.
5=\left(\frac{137}{125}\right)^{n}
Add 1 and \frac{12}{125} to get \frac{137}{125}.
\left(\frac{137}{125}\right)^{n}=5
Swap sides so that all variable terms are on the left hand side.
\log(\left(\frac{137}{125}\right)^{n})=\log(5)
Take the logarithm of both sides of the equation.
n\log(\frac{137}{125})=\log(5)
The logarithm of a number raised to a power is the power times the logarithm of the number.
n=\frac{\log(5)}{\log(\frac{137}{125})}
Divide both sides by \log(\frac{137}{125}).
n=\log_{\frac{137}{125}}\left(5\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}