Solve for p
p=\frac{37}{4j^{2}}
j\neq 0
Solve for j
j=\frac{\sqrt{\frac{37}{p}}}{2}
j=-\frac{\sqrt{\frac{37}{p}}}{2}\text{, }p>0
Share
Copied to clipboard
5=\frac{57}{4}-pj^{2}
Add \frac{9}{4} and 12 to get \frac{57}{4}.
\frac{57}{4}-pj^{2}=5
Swap sides so that all variable terms are on the left hand side.
-pj^{2}=5-\frac{57}{4}
Subtract \frac{57}{4} from both sides.
-pj^{2}=-\frac{37}{4}
Subtract \frac{57}{4} from 5 to get -\frac{37}{4}.
\left(-j^{2}\right)p=-\frac{37}{4}
The equation is in standard form.
\frac{\left(-j^{2}\right)p}{-j^{2}}=-\frac{\frac{37}{4}}{-j^{2}}
Divide both sides by -j^{2}.
p=-\frac{\frac{37}{4}}{-j^{2}}
Dividing by -j^{2} undoes the multiplication by -j^{2}.
p=\frac{37}{4j^{2}}
Divide -\frac{37}{4} by -j^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}