Solve for x
x = \frac{\sqrt{15} + 3}{2} \approx 3.436491673
x=\frac{3-\sqrt{15}}{2}\approx -0.436491673
Graph
Share
Copied to clipboard
20+\left(24-8x\right)x=8
Multiply both sides of the equation by 12, the least common multiple of 3,12.
20+24x-8x^{2}=8
Use the distributive property to multiply 24-8x by x.
20+24x-8x^{2}-8=0
Subtract 8 from both sides.
12+24x-8x^{2}=0
Subtract 8 from 20 to get 12.
-8x^{2}+24x+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-24±\sqrt{24^{2}-4\left(-8\right)\times 12}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 24 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\left(-8\right)\times 12}}{2\left(-8\right)}
Square 24.
x=\frac{-24±\sqrt{576+32\times 12}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-24±\sqrt{576+384}}{2\left(-8\right)}
Multiply 32 times 12.
x=\frac{-24±\sqrt{960}}{2\left(-8\right)}
Add 576 to 384.
x=\frac{-24±8\sqrt{15}}{2\left(-8\right)}
Take the square root of 960.
x=\frac{-24±8\sqrt{15}}{-16}
Multiply 2 times -8.
x=\frac{8\sqrt{15}-24}{-16}
Now solve the equation x=\frac{-24±8\sqrt{15}}{-16} when ± is plus. Add -24 to 8\sqrt{15}.
x=\frac{3-\sqrt{15}}{2}
Divide -24+8\sqrt{15} by -16.
x=\frac{-8\sqrt{15}-24}{-16}
Now solve the equation x=\frac{-24±8\sqrt{15}}{-16} when ± is minus. Subtract 8\sqrt{15} from -24.
x=\frac{\sqrt{15}+3}{2}
Divide -24-8\sqrt{15} by -16.
x=\frac{3-\sqrt{15}}{2} x=\frac{\sqrt{15}+3}{2}
The equation is now solved.
20+\left(24-8x\right)x=8
Multiply both sides of the equation by 12, the least common multiple of 3,12.
20+24x-8x^{2}=8
Use the distributive property to multiply 24-8x by x.
24x-8x^{2}=8-20
Subtract 20 from both sides.
24x-8x^{2}=-12
Subtract 20 from 8 to get -12.
-8x^{2}+24x=-12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-8x^{2}+24x}{-8}=-\frac{12}{-8}
Divide both sides by -8.
x^{2}+\frac{24}{-8}x=-\frac{12}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}-3x=-\frac{12}{-8}
Divide 24 by -8.
x^{2}-3x=\frac{3}{2}
Reduce the fraction \frac{-12}{-8} to lowest terms by extracting and canceling out 4.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{3}{2}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=\frac{3}{2}+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{15}{4}
Add \frac{3}{2} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=\frac{15}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{15}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{15}}{2} x-\frac{3}{2}=-\frac{\sqrt{15}}{2}
Simplify.
x=\frac{\sqrt{15}+3}{2} x=\frac{3-\sqrt{15}}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}