Solve for x
x>\frac{7}{3}
Graph
Share
Copied to clipboard
30+x<\left(3\times 6+1\right)x-12
Multiply both sides of the equation by 6. Since 6 is positive, the inequality direction remains the same.
30+x<\left(18+1\right)x-12
Multiply 3 and 6 to get 18.
30+x<19x-12
Add 18 and 1 to get 19.
30+x-19x<-12
Subtract 19x from both sides.
30-18x<-12
Combine x and -19x to get -18x.
-18x<-12-30
Subtract 30 from both sides.
-18x<-42
Subtract 30 from -12 to get -42.
x>\frac{-42}{-18}
Divide both sides by -18. Since -18 is negative, the inequality direction is changed.
x>\frac{7}{3}
Reduce the fraction \frac{-42}{-18} to lowest terms by extracting and canceling out -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}