Solve for x
x=-\frac{2\left(y+1\right)}{4y+1}
y\neq -\frac{1}{4}
Solve for y
y=-\frac{x+2}{2\left(2x+1\right)}
x\neq -\frac{1}{2}
Graph
Share
Copied to clipboard
4xy+2x+2y+2-x=0
Subtract x from both sides.
4xy+x+2y+2=0
Combine 2x and -x to get x.
4xy+x+2=-2y
Subtract 2y from both sides. Anything subtracted from zero gives its negation.
4xy+x=-2y-2
Subtract 2 from both sides.
\left(4y+1\right)x=-2y-2
Combine all terms containing x.
\frac{\left(4y+1\right)x}{4y+1}=\frac{-2y-2}{4y+1}
Divide both sides by 4y+1.
x=\frac{-2y-2}{4y+1}
Dividing by 4y+1 undoes the multiplication by 4y+1.
x=-\frac{2\left(y+1\right)}{4y+1}
Divide -2y-2 by 4y+1.
4xy+2y+2=x-2x
Subtract 2x from both sides.
4xy+2y+2=-x
Combine x and -2x to get -x.
4xy+2y=-x-2
Subtract 2 from both sides.
\left(4x+2\right)y=-x-2
Combine all terms containing y.
\frac{\left(4x+2\right)y}{4x+2}=\frac{-x-2}{4x+2}
Divide both sides by 4x+2.
y=\frac{-x-2}{4x+2}
Dividing by 4x+2 undoes the multiplication by 4x+2.
y=-\frac{x+2}{2\left(2x+1\right)}
Divide -x-2 by 4x+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}