Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x-2x^{2}-4x^{2}+5
Combine 4x and 12x to get 16x.
16x-6x^{2}+5
Combine -2x^{2} and -4x^{2} to get -6x^{2}.
factor(16x-2x^{2}-4x^{2}+5)
Combine 4x and 12x to get 16x.
factor(16x-6x^{2}+5)
Combine -2x^{2} and -4x^{2} to get -6x^{2}.
-6x^{2}+16x+5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-16±\sqrt{16^{2}-4\left(-6\right)\times 5}}{2\left(-6\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{256-4\left(-6\right)\times 5}}{2\left(-6\right)}
Square 16.
x=\frac{-16±\sqrt{256+24\times 5}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-16±\sqrt{256+120}}{2\left(-6\right)}
Multiply 24 times 5.
x=\frac{-16±\sqrt{376}}{2\left(-6\right)}
Add 256 to 120.
x=\frac{-16±2\sqrt{94}}{2\left(-6\right)}
Take the square root of 376.
x=\frac{-16±2\sqrt{94}}{-12}
Multiply 2 times -6.
x=\frac{2\sqrt{94}-16}{-12}
Now solve the equation x=\frac{-16±2\sqrt{94}}{-12} when ± is plus. Add -16 to 2\sqrt{94}.
x=-\frac{\sqrt{94}}{6}+\frac{4}{3}
Divide -16+2\sqrt{94} by -12.
x=\frac{-2\sqrt{94}-16}{-12}
Now solve the equation x=\frac{-16±2\sqrt{94}}{-12} when ± is minus. Subtract 2\sqrt{94} from -16.
x=\frac{\sqrt{94}}{6}+\frac{4}{3}
Divide -16-2\sqrt{94} by -12.
-6x^{2}+16x+5=-6\left(x-\left(-\frac{\sqrt{94}}{6}+\frac{4}{3}\right)\right)\left(x-\left(\frac{\sqrt{94}}{6}+\frac{4}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{4}{3}-\frac{\sqrt{94}}{6} for x_{1} and \frac{4}{3}+\frac{\sqrt{94}}{6} for x_{2}.