Evaluate
5+16x-6x^{2}
Factor
-6\left(x-\left(-\frac{\sqrt{94}}{6}+\frac{4}{3}\right)\right)\left(x-\left(\frac{\sqrt{94}}{6}+\frac{4}{3}\right)\right)
Graph
Share
Copied to clipboard
16x-2x^{2}-4x^{2}+5
Combine 4x and 12x to get 16x.
16x-6x^{2}+5
Combine -2x^{2} and -4x^{2} to get -6x^{2}.
factor(16x-2x^{2}-4x^{2}+5)
Combine 4x and 12x to get 16x.
factor(16x-6x^{2}+5)
Combine -2x^{2} and -4x^{2} to get -6x^{2}.
-6x^{2}+16x+5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-16±\sqrt{16^{2}-4\left(-6\right)\times 5}}{2\left(-6\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{256-4\left(-6\right)\times 5}}{2\left(-6\right)}
Square 16.
x=\frac{-16±\sqrt{256+24\times 5}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-16±\sqrt{256+120}}{2\left(-6\right)}
Multiply 24 times 5.
x=\frac{-16±\sqrt{376}}{2\left(-6\right)}
Add 256 to 120.
x=\frac{-16±2\sqrt{94}}{2\left(-6\right)}
Take the square root of 376.
x=\frac{-16±2\sqrt{94}}{-12}
Multiply 2 times -6.
x=\frac{2\sqrt{94}-16}{-12}
Now solve the equation x=\frac{-16±2\sqrt{94}}{-12} when ± is plus. Add -16 to 2\sqrt{94}.
x=-\frac{\sqrt{94}}{6}+\frac{4}{3}
Divide -16+2\sqrt{94} by -12.
x=\frac{-2\sqrt{94}-16}{-12}
Now solve the equation x=\frac{-16±2\sqrt{94}}{-12} when ± is minus. Subtract 2\sqrt{94} from -16.
x=\frac{\sqrt{94}}{6}+\frac{4}{3}
Divide -16-2\sqrt{94} by -12.
-6x^{2}+16x+5=-6\left(x-\left(-\frac{\sqrt{94}}{6}+\frac{4}{3}\right)\right)\left(x-\left(\frac{\sqrt{94}}{6}+\frac{4}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{4}{3}-\frac{\sqrt{94}}{6} for x_{1} and \frac{4}{3}+\frac{\sqrt{94}}{6} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}