Solve for x
x=3\sqrt{42}-\frac{39}{2}\approx -0.057777905
x=-3\sqrt{42}-\frac{39}{2}\approx -38.942222095
Graph
Share
Copied to clipboard
4x^{2}+156x+9=0
Use the distributive property to multiply 4x by x+39.
x=\frac{-156±\sqrt{156^{2}-4\times 4\times 9}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 156 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-156±\sqrt{24336-4\times 4\times 9}}{2\times 4}
Square 156.
x=\frac{-156±\sqrt{24336-16\times 9}}{2\times 4}
Multiply -4 times 4.
x=\frac{-156±\sqrt{24336-144}}{2\times 4}
Multiply -16 times 9.
x=\frac{-156±\sqrt{24192}}{2\times 4}
Add 24336 to -144.
x=\frac{-156±24\sqrt{42}}{2\times 4}
Take the square root of 24192.
x=\frac{-156±24\sqrt{42}}{8}
Multiply 2 times 4.
x=\frac{24\sqrt{42}-156}{8}
Now solve the equation x=\frac{-156±24\sqrt{42}}{8} when ± is plus. Add -156 to 24\sqrt{42}.
x=3\sqrt{42}-\frac{39}{2}
Divide -156+24\sqrt{42} by 8.
x=\frac{-24\sqrt{42}-156}{8}
Now solve the equation x=\frac{-156±24\sqrt{42}}{8} when ± is minus. Subtract 24\sqrt{42} from -156.
x=-3\sqrt{42}-\frac{39}{2}
Divide -156-24\sqrt{42} by 8.
x=3\sqrt{42}-\frac{39}{2} x=-3\sqrt{42}-\frac{39}{2}
The equation is now solved.
4x^{2}+156x+9=0
Use the distributive property to multiply 4x by x+39.
4x^{2}+156x=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
\frac{4x^{2}+156x}{4}=-\frac{9}{4}
Divide both sides by 4.
x^{2}+\frac{156}{4}x=-\frac{9}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+39x=-\frac{9}{4}
Divide 156 by 4.
x^{2}+39x+\left(\frac{39}{2}\right)^{2}=-\frac{9}{4}+\left(\frac{39}{2}\right)^{2}
Divide 39, the coefficient of the x term, by 2 to get \frac{39}{2}. Then add the square of \frac{39}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+39x+\frac{1521}{4}=\frac{-9+1521}{4}
Square \frac{39}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+39x+\frac{1521}{4}=378
Add -\frac{9}{4} to \frac{1521}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{39}{2}\right)^{2}=378
Factor x^{2}+39x+\frac{1521}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{39}{2}\right)^{2}}=\sqrt{378}
Take the square root of both sides of the equation.
x+\frac{39}{2}=3\sqrt{42} x+\frac{39}{2}=-3\sqrt{42}
Simplify.
x=3\sqrt{42}-\frac{39}{2} x=-3\sqrt{42}-\frac{39}{2}
Subtract \frac{39}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}