Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+156x+9=0
Use the distributive property to multiply 4x by x+39.
x=\frac{-156±\sqrt{156^{2}-4\times 4\times 9}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 156 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-156±\sqrt{24336-4\times 4\times 9}}{2\times 4}
Square 156.
x=\frac{-156±\sqrt{24336-16\times 9}}{2\times 4}
Multiply -4 times 4.
x=\frac{-156±\sqrt{24336-144}}{2\times 4}
Multiply -16 times 9.
x=\frac{-156±\sqrt{24192}}{2\times 4}
Add 24336 to -144.
x=\frac{-156±24\sqrt{42}}{2\times 4}
Take the square root of 24192.
x=\frac{-156±24\sqrt{42}}{8}
Multiply 2 times 4.
x=\frac{24\sqrt{42}-156}{8}
Now solve the equation x=\frac{-156±24\sqrt{42}}{8} when ± is plus. Add -156 to 24\sqrt{42}.
x=3\sqrt{42}-\frac{39}{2}
Divide -156+24\sqrt{42} by 8.
x=\frac{-24\sqrt{42}-156}{8}
Now solve the equation x=\frac{-156±24\sqrt{42}}{8} when ± is minus. Subtract 24\sqrt{42} from -156.
x=-3\sqrt{42}-\frac{39}{2}
Divide -156-24\sqrt{42} by 8.
x=3\sqrt{42}-\frac{39}{2} x=-3\sqrt{42}-\frac{39}{2}
The equation is now solved.
4x^{2}+156x+9=0
Use the distributive property to multiply 4x by x+39.
4x^{2}+156x=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
\frac{4x^{2}+156x}{4}=-\frac{9}{4}
Divide both sides by 4.
x^{2}+\frac{156}{4}x=-\frac{9}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+39x=-\frac{9}{4}
Divide 156 by 4.
x^{2}+39x+\left(\frac{39}{2}\right)^{2}=-\frac{9}{4}+\left(\frac{39}{2}\right)^{2}
Divide 39, the coefficient of the x term, by 2 to get \frac{39}{2}. Then add the square of \frac{39}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+39x+\frac{1521}{4}=\frac{-9+1521}{4}
Square \frac{39}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+39x+\frac{1521}{4}=378
Add -\frac{9}{4} to \frac{1521}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{39}{2}\right)^{2}=378
Factor x^{2}+39x+\frac{1521}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{39}{2}\right)^{2}}=\sqrt{378}
Take the square root of both sides of the equation.
x+\frac{39}{2}=3\sqrt{42} x+\frac{39}{2}=-3\sqrt{42}
Simplify.
x=3\sqrt{42}-\frac{39}{2} x=-3\sqrt{42}-\frac{39}{2}
Subtract \frac{39}{2} from both sides of the equation.