Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+4x=15
Use the distributive property to multiply 4x by x+1.
4x^{2}+4x-15=0
Subtract 15 from both sides.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-15\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 4 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4\left(-15\right)}}{2\times 4}
Square 4.
x=\frac{-4±\sqrt{16-16\left(-15\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-4±\sqrt{16+240}}{2\times 4}
Multiply -16 times -15.
x=\frac{-4±\sqrt{256}}{2\times 4}
Add 16 to 240.
x=\frac{-4±16}{2\times 4}
Take the square root of 256.
x=\frac{-4±16}{8}
Multiply 2 times 4.
x=\frac{12}{8}
Now solve the equation x=\frac{-4±16}{8} when ± is plus. Add -4 to 16.
x=\frac{3}{2}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
x=-\frac{20}{8}
Now solve the equation x=\frac{-4±16}{8} when ± is minus. Subtract 16 from -4.
x=-\frac{5}{2}
Reduce the fraction \frac{-20}{8} to lowest terms by extracting and canceling out 4.
x=\frac{3}{2} x=-\frac{5}{2}
The equation is now solved.
4x^{2}+4x=15
Use the distributive property to multiply 4x by x+1.
\frac{4x^{2}+4x}{4}=\frac{15}{4}
Divide both sides by 4.
x^{2}+\frac{4}{4}x=\frac{15}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+x=\frac{15}{4}
Divide 4 by 4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{15}{4}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{15+1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=4
Add \frac{15}{4} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=4
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x+\frac{1}{2}=2 x+\frac{1}{2}=-2
Simplify.
x=\frac{3}{2} x=-\frac{5}{2}
Subtract \frac{1}{2} from both sides of the equation.