Solve for x
x=0
x=\frac{9}{16}=0.5625
Graph
Share
Copied to clipboard
\left(4x\right)^{2}=\left(3\sqrt{x}\right)^{2}
Square both sides of the equation.
4^{2}x^{2}=\left(3\sqrt{x}\right)^{2}
Expand \left(4x\right)^{2}.
16x^{2}=\left(3\sqrt{x}\right)^{2}
Calculate 4 to the power of 2 and get 16.
16x^{2}=3^{2}\left(\sqrt{x}\right)^{2}
Expand \left(3\sqrt{x}\right)^{2}.
16x^{2}=9\left(\sqrt{x}\right)^{2}
Calculate 3 to the power of 2 and get 9.
16x^{2}=9x
Calculate \sqrt{x} to the power of 2 and get x.
16x^{2}-9x=0
Subtract 9x from both sides.
x\left(16x-9\right)=0
Factor out x.
x=0 x=\frac{9}{16}
To find equation solutions, solve x=0 and 16x-9=0.
4\times 0=3\sqrt{0}
Substitute 0 for x in the equation 4x=3\sqrt{x}.
0=0
Simplify. The value x=0 satisfies the equation.
4\times \frac{9}{16}=3\sqrt{\frac{9}{16}}
Substitute \frac{9}{16} for x in the equation 4x=3\sqrt{x}.
\frac{9}{4}=\frac{9}{4}
Simplify. The value x=\frac{9}{16} satisfies the equation.
x=0 x=\frac{9}{16}
List all solutions of 4x=3\sqrt{x}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}