Solve for x
x=-6y-\frac{5}{2}
Solve for y
y=-\frac{x}{6}-\frac{5}{12}
Graph
Share
Copied to clipboard
4x+10=-24y
Subtract 24y from both sides. Anything subtracted from zero gives its negation.
4x=-24y-10
Subtract 10 from both sides.
\frac{4x}{4}=\frac{-24y-10}{4}
Divide both sides by 4.
x=\frac{-24y-10}{4}
Dividing by 4 undoes the multiplication by 4.
x=-6y-\frac{5}{2}
Divide -24y-10 by 4.
24y+10=-4x
Subtract 4x from both sides. Anything subtracted from zero gives its negation.
24y=-4x-10
Subtract 10 from both sides.
\frac{24y}{24}=\frac{-4x-10}{24}
Divide both sides by 24.
y=\frac{-4x-10}{24}
Dividing by 24 undoes the multiplication by 24.
y=-\frac{x}{6}-\frac{5}{12}
Divide -4x-10 by 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}