Solve for x
x = \frac{49 - \sqrt{97}}{32} \approx 1.223473194
Graph
Share
Copied to clipboard
\sqrt{x}=-\left(4x-6\right)
Subtract 4x-6 from both sides of the equation.
\sqrt{x}=-4x-\left(-6\right)
To find the opposite of 4x-6, find the opposite of each term.
\sqrt{x}=-4x+6
The opposite of -6 is 6.
\left(\sqrt{x}\right)^{2}=\left(-4x+6\right)^{2}
Square both sides of the equation.
x=\left(-4x+6\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=16x^{2}-48x+36
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-4x+6\right)^{2}.
x-16x^{2}=-48x+36
Subtract 16x^{2} from both sides.
x-16x^{2}+48x=36
Add 48x to both sides.
49x-16x^{2}=36
Combine x and 48x to get 49x.
49x-16x^{2}-36=0
Subtract 36 from both sides.
-16x^{2}+49x-36=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-49±\sqrt{49^{2}-4\left(-16\right)\left(-36\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 49 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-49±\sqrt{2401-4\left(-16\right)\left(-36\right)}}{2\left(-16\right)}
Square 49.
x=\frac{-49±\sqrt{2401+64\left(-36\right)}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-49±\sqrt{2401-2304}}{2\left(-16\right)}
Multiply 64 times -36.
x=\frac{-49±\sqrt{97}}{2\left(-16\right)}
Add 2401 to -2304.
x=\frac{-49±\sqrt{97}}{-32}
Multiply 2 times -16.
x=\frac{\sqrt{97}-49}{-32}
Now solve the equation x=\frac{-49±\sqrt{97}}{-32} when ± is plus. Add -49 to \sqrt{97}.
x=\frac{49-\sqrt{97}}{32}
Divide -49+\sqrt{97} by -32.
x=\frac{-\sqrt{97}-49}{-32}
Now solve the equation x=\frac{-49±\sqrt{97}}{-32} when ± is minus. Subtract \sqrt{97} from -49.
x=\frac{\sqrt{97}+49}{32}
Divide -49-\sqrt{97} by -32.
x=\frac{49-\sqrt{97}}{32} x=\frac{\sqrt{97}+49}{32}
The equation is now solved.
4\times \frac{49-\sqrt{97}}{32}+\sqrt{\frac{49-\sqrt{97}}{32}}-6=0
Substitute \frac{49-\sqrt{97}}{32} for x in the equation 4x+\sqrt{x}-6=0.
0=0
Simplify. The value x=\frac{49-\sqrt{97}}{32} satisfies the equation.
4\times \frac{\sqrt{97}+49}{32}+\sqrt{\frac{\sqrt{97}+49}{32}}-6=0
Substitute \frac{\sqrt{97}+49}{32} for x in the equation 4x+\sqrt{x}-6=0.
\frac{1}{4}\times 97^{\frac{1}{2}}+\frac{1}{4}=0
Simplify. The value x=\frac{\sqrt{97}+49}{32} does not satisfy the equation.
x=\frac{49-\sqrt{97}}{32}
Equation \sqrt{x}=6-4x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}