Solve for x (complex solution)
x=\frac{3y^{2}+1}{4y^{2}-3}
y\neq -\frac{\sqrt{3}}{2}\text{ and }y\neq \frac{\sqrt{3}}{2}
Solve for x
x=\frac{3y^{2}+1}{4y^{2}-3}
|y|\neq \frac{\sqrt{3}}{2}
Solve for y (complex solution)
y=-i\left(4x-3\right)^{-\frac{1}{2}}\sqrt{-3x-1}
y=i\left(4x-3\right)^{-\frac{1}{2}}\sqrt{-3x-1}\text{, }x\neq \frac{3}{4}
Solve for y
y=\sqrt{\frac{3x+1}{4x-3}}
y=-\sqrt{\frac{3x+1}{4x-3}}\text{, }x\leq -\frac{1}{3}\text{ or }x>\frac{3}{4}
Graph
Share
Copied to clipboard
4xy^{2}-3x=1+3y^{2}
Add 3y^{2} to both sides.
\left(4y^{2}-3\right)x=1+3y^{2}
Combine all terms containing x.
\left(4y^{2}-3\right)x=3y^{2}+1
The equation is in standard form.
\frac{\left(4y^{2}-3\right)x}{4y^{2}-3}=\frac{3y^{2}+1}{4y^{2}-3}
Divide both sides by 4y^{2}-3.
x=\frac{3y^{2}+1}{4y^{2}-3}
Dividing by 4y^{2}-3 undoes the multiplication by 4y^{2}-3.
4xy^{2}-3x=1+3y^{2}
Add 3y^{2} to both sides.
\left(4y^{2}-3\right)x=1+3y^{2}
Combine all terms containing x.
\left(4y^{2}-3\right)x=3y^{2}+1
The equation is in standard form.
\frac{\left(4y^{2}-3\right)x}{4y^{2}-3}=\frac{3y^{2}+1}{4y^{2}-3}
Divide both sides by 4y^{2}-3.
x=\frac{3y^{2}+1}{4y^{2}-3}
Dividing by 4y^{2}-3 undoes the multiplication by 4y^{2}-3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}