Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}\times 6=37.5
Multiply x and x to get x^{2}.
24x^{2}=37.5
Multiply 4 and 6 to get 24.
x^{2}=\frac{37.5}{24}
Divide both sides by 24.
x^{2}=\frac{375}{240}
Expand \frac{37.5}{24} by multiplying both numerator and the denominator by 10.
x^{2}=\frac{25}{16}
Reduce the fraction \frac{375}{240} to lowest terms by extracting and canceling out 15.
x=\frac{5}{4} x=-\frac{5}{4}
Take the square root of both sides of the equation.
4x^{2}\times 6=37.5
Multiply x and x to get x^{2}.
24x^{2}=37.5
Multiply 4 and 6 to get 24.
24x^{2}-37.5=0
Subtract 37.5 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 24\left(-37.5\right)}}{2\times 24}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24 for a, 0 for b, and -37.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 24\left(-37.5\right)}}{2\times 24}
Square 0.
x=\frac{0±\sqrt{-96\left(-37.5\right)}}{2\times 24}
Multiply -4 times 24.
x=\frac{0±\sqrt{3600}}{2\times 24}
Multiply -96 times -37.5.
x=\frac{0±60}{2\times 24}
Take the square root of 3600.
x=\frac{0±60}{48}
Multiply 2 times 24.
x=\frac{5}{4}
Now solve the equation x=\frac{0±60}{48} when ± is plus. Reduce the fraction \frac{60}{48} to lowest terms by extracting and canceling out 12.
x=-\frac{5}{4}
Now solve the equation x=\frac{0±60}{48} when ± is minus. Reduce the fraction \frac{-60}{48} to lowest terms by extracting and canceling out 12.
x=\frac{5}{4} x=-\frac{5}{4}
The equation is now solved.