Solve for x
x=1
x=46
Graph
Share
Copied to clipboard
49x-45=x^{2}+2x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
49x-45-x^{2}=2x+1
Subtract x^{2} from both sides.
49x-45-x^{2}-2x=1
Subtract 2x from both sides.
47x-45-x^{2}=1
Combine 49x and -2x to get 47x.
47x-45-x^{2}-1=0
Subtract 1 from both sides.
47x-46-x^{2}=0
Subtract 1 from -45 to get -46.
-x^{2}+47x-46=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=47 ab=-\left(-46\right)=46
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-46. To find a and b, set up a system to be solved.
1,46 2,23
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 46.
1+46=47 2+23=25
Calculate the sum for each pair.
a=46 b=1
The solution is the pair that gives sum 47.
\left(-x^{2}+46x\right)+\left(x-46\right)
Rewrite -x^{2}+47x-46 as \left(-x^{2}+46x\right)+\left(x-46\right).
-x\left(x-46\right)+x-46
Factor out -x in -x^{2}+46x.
\left(x-46\right)\left(-x+1\right)
Factor out common term x-46 by using distributive property.
x=46 x=1
To find equation solutions, solve x-46=0 and -x+1=0.
49x-45=x^{2}+2x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
49x-45-x^{2}=2x+1
Subtract x^{2} from both sides.
49x-45-x^{2}-2x=1
Subtract 2x from both sides.
47x-45-x^{2}=1
Combine 49x and -2x to get 47x.
47x-45-x^{2}-1=0
Subtract 1 from both sides.
47x-46-x^{2}=0
Subtract 1 from -45 to get -46.
-x^{2}+47x-46=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-47±\sqrt{47^{2}-4\left(-1\right)\left(-46\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 47 for b, and -46 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-47±\sqrt{2209-4\left(-1\right)\left(-46\right)}}{2\left(-1\right)}
Square 47.
x=\frac{-47±\sqrt{2209+4\left(-46\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-47±\sqrt{2209-184}}{2\left(-1\right)}
Multiply 4 times -46.
x=\frac{-47±\sqrt{2025}}{2\left(-1\right)}
Add 2209 to -184.
x=\frac{-47±45}{2\left(-1\right)}
Take the square root of 2025.
x=\frac{-47±45}{-2}
Multiply 2 times -1.
x=-\frac{2}{-2}
Now solve the equation x=\frac{-47±45}{-2} when ± is plus. Add -47 to 45.
x=1
Divide -2 by -2.
x=-\frac{92}{-2}
Now solve the equation x=\frac{-47±45}{-2} when ± is minus. Subtract 45 from -47.
x=46
Divide -92 by -2.
x=1 x=46
The equation is now solved.
49x-45=x^{2}+2x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
49x-45-x^{2}=2x+1
Subtract x^{2} from both sides.
49x-45-x^{2}-2x=1
Subtract 2x from both sides.
47x-45-x^{2}=1
Combine 49x and -2x to get 47x.
47x-x^{2}=1+45
Add 45 to both sides.
47x-x^{2}=46
Add 1 and 45 to get 46.
-x^{2}+47x=46
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+47x}{-1}=\frac{46}{-1}
Divide both sides by -1.
x^{2}+\frac{47}{-1}x=\frac{46}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-47x=\frac{46}{-1}
Divide 47 by -1.
x^{2}-47x=-46
Divide 46 by -1.
x^{2}-47x+\left(-\frac{47}{2}\right)^{2}=-46+\left(-\frac{47}{2}\right)^{2}
Divide -47, the coefficient of the x term, by 2 to get -\frac{47}{2}. Then add the square of -\frac{47}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-47x+\frac{2209}{4}=-46+\frac{2209}{4}
Square -\frac{47}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-47x+\frac{2209}{4}=\frac{2025}{4}
Add -46 to \frac{2209}{4}.
\left(x-\frac{47}{2}\right)^{2}=\frac{2025}{4}
Factor x^{2}-47x+\frac{2209}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{47}{2}\right)^{2}}=\sqrt{\frac{2025}{4}}
Take the square root of both sides of the equation.
x-\frac{47}{2}=\frac{45}{2} x-\frac{47}{2}=-\frac{45}{2}
Simplify.
x=46 x=1
Add \frac{47}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}