Evaluate
\frac{34}{5}=6.8
Factor
\frac{2 \cdot 17}{5} = 6\frac{4}{5} = 6.8
Share
Copied to clipboard
\begin{array}{l}\phantom{725)}\phantom{1}\\725\overline{)4930}\\\end{array}
Use the 1^{st} digit 4 from dividend 4930
\begin{array}{l}\phantom{725)}0\phantom{2}\\725\overline{)4930}\\\end{array}
Since 4 is less than 725, use the next digit 9 from dividend 4930 and add 0 to the quotient
\begin{array}{l}\phantom{725)}0\phantom{3}\\725\overline{)4930}\\\end{array}
Use the 2^{nd} digit 9 from dividend 4930
\begin{array}{l}\phantom{725)}00\phantom{4}\\725\overline{)4930}\\\end{array}
Since 49 is less than 725, use the next digit 3 from dividend 4930 and add 0 to the quotient
\begin{array}{l}\phantom{725)}00\phantom{5}\\725\overline{)4930}\\\end{array}
Use the 3^{rd} digit 3 from dividend 4930
\begin{array}{l}\phantom{725)}000\phantom{6}\\725\overline{)4930}\\\end{array}
Since 493 is less than 725, use the next digit 0 from dividend 4930 and add 0 to the quotient
\begin{array}{l}\phantom{725)}000\phantom{7}\\725\overline{)4930}\\\end{array}
Use the 4^{th} digit 0 from dividend 4930
\begin{array}{l}\phantom{725)}0006\phantom{8}\\725\overline{)4930}\\\phantom{725)}\underline{\phantom{}4350\phantom{}}\\\phantom{725)9}580\\\end{array}
Find closest multiple of 725 to 4930. We see that 6 \times 725 = 4350 is the nearest. Now subtract 4350 from 4930 to get reminder 580. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }580
Since 580 is less than 725, stop the division. The reminder is 580. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}