Evaluate
\frac{245}{13}\approx 18.846153846
Factor
\frac{5 \cdot 7 ^ {2}}{13} = 18\frac{11}{13} = 18.846153846153847
Share
Copied to clipboard
\begin{array}{l}\phantom{26)}\phantom{1}\\26\overline{)490}\\\end{array}
Use the 1^{st} digit 4 from dividend 490
\begin{array}{l}\phantom{26)}0\phantom{2}\\26\overline{)490}\\\end{array}
Since 4 is less than 26, use the next digit 9 from dividend 490 and add 0 to the quotient
\begin{array}{l}\phantom{26)}0\phantom{3}\\26\overline{)490}\\\end{array}
Use the 2^{nd} digit 9 from dividend 490
\begin{array}{l}\phantom{26)}01\phantom{4}\\26\overline{)490}\\\phantom{26)}\underline{\phantom{}26\phantom{9}}\\\phantom{26)}23\\\end{array}
Find closest multiple of 26 to 49. We see that 1 \times 26 = 26 is the nearest. Now subtract 26 from 49 to get reminder 23. Add 1 to quotient.
\begin{array}{l}\phantom{26)}01\phantom{5}\\26\overline{)490}\\\phantom{26)}\underline{\phantom{}26\phantom{9}}\\\phantom{26)}230\\\end{array}
Use the 3^{rd} digit 0 from dividend 490
\begin{array}{l}\phantom{26)}018\phantom{6}\\26\overline{)490}\\\phantom{26)}\underline{\phantom{}26\phantom{9}}\\\phantom{26)}230\\\phantom{26)}\underline{\phantom{}208\phantom{}}\\\phantom{26)9}22\\\end{array}
Find closest multiple of 26 to 230. We see that 8 \times 26 = 208 is the nearest. Now subtract 208 from 230 to get reminder 22. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }22
Since 22 is less than 26, stop the division. The reminder is 22. The topmost line 018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}