Solve for t
t=\frac{1225x^{2}-375}{251}
Solve for x (complex solution)
x=-\frac{\sqrt{251t+375}}{35}
x=\frac{\sqrt{251t+375}}{35}
Solve for x
x=\frac{\sqrt{251t+375}}{35}
x=-\frac{\sqrt{251t+375}}{35}\text{, }t\geq -\frac{375}{251}
Graph
Share
Copied to clipboard
49x^{2}-10.04t-15=0
Multiply 5 and 3 to get 15.
-10.04t-15=-49x^{2}
Subtract 49x^{2} from both sides. Anything subtracted from zero gives its negation.
-10.04t=-49x^{2}+15
Add 15 to both sides.
-10.04t=15-49x^{2}
The equation is in standard form.
\frac{-10.04t}{-10.04}=\frac{15-49x^{2}}{-10.04}
Divide both sides of the equation by -10.04, which is the same as multiplying both sides by the reciprocal of the fraction.
t=\frac{15-49x^{2}}{-10.04}
Dividing by -10.04 undoes the multiplication by -10.04.
t=\frac{1225x^{2}-375}{251}
Divide -49x^{2}+15 by -10.04 by multiplying -49x^{2}+15 by the reciprocal of -10.04.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}