Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

w\left(49w-24\right)
Factor out w.
49w^{2}-24w=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
w=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}}}{2\times 49}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
w=\frac{-\left(-24\right)±24}{2\times 49}
Take the square root of \left(-24\right)^{2}.
w=\frac{24±24}{2\times 49}
The opposite of -24 is 24.
w=\frac{24±24}{98}
Multiply 2 times 49.
w=\frac{48}{98}
Now solve the equation w=\frac{24±24}{98} when ± is plus. Add 24 to 24.
w=\frac{24}{49}
Reduce the fraction \frac{48}{98} to lowest terms by extracting and canceling out 2.
w=\frac{0}{98}
Now solve the equation w=\frac{24±24}{98} when ± is minus. Subtract 24 from 24.
w=0
Divide 0 by 98.
49w^{2}-24w=49\left(w-\frac{24}{49}\right)w
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{24}{49} for x_{1} and 0 for x_{2}.
49w^{2}-24w=49\times \frac{49w-24}{49}w
Subtract \frac{24}{49} from w by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
49w^{2}-24w=\left(49w-24\right)w
Cancel out 49, the greatest common factor in 49 and 49.