Solve for y
y=\frac{12\sqrt{15}-2}{49}\approx 0.907669391
y=\frac{-12\sqrt{15}-2}{49}\approx -0.989302044
Graph
Share
Copied to clipboard
49y^{2}+4y-44=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-4±\sqrt{4^{2}-4\times 49\left(-44\right)}}{2\times 49}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 49 for a, 4 for b, and -44 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-4±\sqrt{16-4\times 49\left(-44\right)}}{2\times 49}
Square 4.
y=\frac{-4±\sqrt{16-196\left(-44\right)}}{2\times 49}
Multiply -4 times 49.
y=\frac{-4±\sqrt{16+8624}}{2\times 49}
Multiply -196 times -44.
y=\frac{-4±\sqrt{8640}}{2\times 49}
Add 16 to 8624.
y=\frac{-4±24\sqrt{15}}{2\times 49}
Take the square root of 8640.
y=\frac{-4±24\sqrt{15}}{98}
Multiply 2 times 49.
y=\frac{24\sqrt{15}-4}{98}
Now solve the equation y=\frac{-4±24\sqrt{15}}{98} when ± is plus. Add -4 to 24\sqrt{15}.
y=\frac{12\sqrt{15}-2}{49}
Divide -4+24\sqrt{15} by 98.
y=\frac{-24\sqrt{15}-4}{98}
Now solve the equation y=\frac{-4±24\sqrt{15}}{98} when ± is minus. Subtract 24\sqrt{15} from -4.
y=\frac{-12\sqrt{15}-2}{49}
Divide -4-24\sqrt{15} by 98.
y=\frac{12\sqrt{15}-2}{49} y=\frac{-12\sqrt{15}-2}{49}
The equation is now solved.
49y^{2}+4y-44=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
49y^{2}+4y-44-\left(-44\right)=-\left(-44\right)
Add 44 to both sides of the equation.
49y^{2}+4y=-\left(-44\right)
Subtracting -44 from itself leaves 0.
49y^{2}+4y=44
Subtract -44 from 0.
\frac{49y^{2}+4y}{49}=\frac{44}{49}
Divide both sides by 49.
y^{2}+\frac{4}{49}y=\frac{44}{49}
Dividing by 49 undoes the multiplication by 49.
y^{2}+\frac{4}{49}y+\left(\frac{2}{49}\right)^{2}=\frac{44}{49}+\left(\frac{2}{49}\right)^{2}
Divide \frac{4}{49}, the coefficient of the x term, by 2 to get \frac{2}{49}. Then add the square of \frac{2}{49} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{4}{49}y+\frac{4}{2401}=\frac{44}{49}+\frac{4}{2401}
Square \frac{2}{49} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{4}{49}y+\frac{4}{2401}=\frac{2160}{2401}
Add \frac{44}{49} to \frac{4}{2401} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{2}{49}\right)^{2}=\frac{2160}{2401}
Factor y^{2}+\frac{4}{49}y+\frac{4}{2401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{2}{49}\right)^{2}}=\sqrt{\frac{2160}{2401}}
Take the square root of both sides of the equation.
y+\frac{2}{49}=\frac{12\sqrt{15}}{49} y+\frac{2}{49}=-\frac{12\sqrt{15}}{49}
Simplify.
y=\frac{12\sqrt{15}-2}{49} y=\frac{-12\sqrt{15}-2}{49}
Subtract \frac{2}{49} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}