Evaluate
\frac{7}{3}\approx 2.333333333
Factor
\frac{7}{3} = 2\frac{1}{3} = 2.3333333333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)49}\\\end{array}
Use the 1^{st} digit 4 from dividend 49
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)49}\\\end{array}
Since 4 is less than 21, use the next digit 9 from dividend 49 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)49}\\\end{array}
Use the 2^{nd} digit 9 from dividend 49
\begin{array}{l}\phantom{21)}02\phantom{4}\\21\overline{)49}\\\phantom{21)}\underline{\phantom{}42\phantom{}}\\\phantom{21)9}7\\\end{array}
Find closest multiple of 21 to 49. We see that 2 \times 21 = 42 is the nearest. Now subtract 42 from 49 to get reminder 7. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }7
Since 7 is less than 21, stop the division. The reminder is 7. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}