Solve for x
x = \frac{\sqrt{1174} - 4}{9} \approx 3.362631489
x=\frac{-\sqrt{1174}-4}{9}\approx -4.251520378
Graph
Share
Copied to clipboard
54x^{2}+48x-772=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-48±\sqrt{48^{2}-4\times 54\left(-772\right)}}{2\times 54}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 54 for a, 48 for b, and -772 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-48±\sqrt{2304-4\times 54\left(-772\right)}}{2\times 54}
Square 48.
x=\frac{-48±\sqrt{2304-216\left(-772\right)}}{2\times 54}
Multiply -4 times 54.
x=\frac{-48±\sqrt{2304+166752}}{2\times 54}
Multiply -216 times -772.
x=\frac{-48±\sqrt{169056}}{2\times 54}
Add 2304 to 166752.
x=\frac{-48±12\sqrt{1174}}{2\times 54}
Take the square root of 169056.
x=\frac{-48±12\sqrt{1174}}{108}
Multiply 2 times 54.
x=\frac{12\sqrt{1174}-48}{108}
Now solve the equation x=\frac{-48±12\sqrt{1174}}{108} when ± is plus. Add -48 to 12\sqrt{1174}.
x=\frac{\sqrt{1174}-4}{9}
Divide -48+12\sqrt{1174} by 108.
x=\frac{-12\sqrt{1174}-48}{108}
Now solve the equation x=\frac{-48±12\sqrt{1174}}{108} when ± is minus. Subtract 12\sqrt{1174} from -48.
x=\frac{-\sqrt{1174}-4}{9}
Divide -48-12\sqrt{1174} by 108.
x=\frac{\sqrt{1174}-4}{9} x=\frac{-\sqrt{1174}-4}{9}
The equation is now solved.
54x^{2}+48x-772=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
54x^{2}+48x-772-\left(-772\right)=-\left(-772\right)
Add 772 to both sides of the equation.
54x^{2}+48x=-\left(-772\right)
Subtracting -772 from itself leaves 0.
54x^{2}+48x=772
Subtract -772 from 0.
\frac{54x^{2}+48x}{54}=\frac{772}{54}
Divide both sides by 54.
x^{2}+\frac{48}{54}x=\frac{772}{54}
Dividing by 54 undoes the multiplication by 54.
x^{2}+\frac{8}{9}x=\frac{772}{54}
Reduce the fraction \frac{48}{54} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{8}{9}x=\frac{386}{27}
Reduce the fraction \frac{772}{54} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{8}{9}x+\left(\frac{4}{9}\right)^{2}=\frac{386}{27}+\left(\frac{4}{9}\right)^{2}
Divide \frac{8}{9}, the coefficient of the x term, by 2 to get \frac{4}{9}. Then add the square of \frac{4}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{8}{9}x+\frac{16}{81}=\frac{386}{27}+\frac{16}{81}
Square \frac{4}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{8}{9}x+\frac{16}{81}=\frac{1174}{81}
Add \frac{386}{27} to \frac{16}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{4}{9}\right)^{2}=\frac{1174}{81}
Factor x^{2}+\frac{8}{9}x+\frac{16}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{9}\right)^{2}}=\sqrt{\frac{1174}{81}}
Take the square root of both sides of the equation.
x+\frac{4}{9}=\frac{\sqrt{1174}}{9} x+\frac{4}{9}=-\frac{\sqrt{1174}}{9}
Simplify.
x=\frac{\sqrt{1174}-4}{9} x=\frac{-\sqrt{1174}-4}{9}
Subtract \frac{4}{9} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}