Evaluate
\frac{29}{5}=5.8
Factor
\frac{29}{5} = 5\frac{4}{5} = 5.8
Share
Copied to clipboard
\begin{array}{l}\phantom{840)}\phantom{1}\\840\overline{)4872}\\\end{array}
Use the 1^{st} digit 4 from dividend 4872
\begin{array}{l}\phantom{840)}0\phantom{2}\\840\overline{)4872}\\\end{array}
Since 4 is less than 840, use the next digit 8 from dividend 4872 and add 0 to the quotient
\begin{array}{l}\phantom{840)}0\phantom{3}\\840\overline{)4872}\\\end{array}
Use the 2^{nd} digit 8 from dividend 4872
\begin{array}{l}\phantom{840)}00\phantom{4}\\840\overline{)4872}\\\end{array}
Since 48 is less than 840, use the next digit 7 from dividend 4872 and add 0 to the quotient
\begin{array}{l}\phantom{840)}00\phantom{5}\\840\overline{)4872}\\\end{array}
Use the 3^{rd} digit 7 from dividend 4872
\begin{array}{l}\phantom{840)}000\phantom{6}\\840\overline{)4872}\\\end{array}
Since 487 is less than 840, use the next digit 2 from dividend 4872 and add 0 to the quotient
\begin{array}{l}\phantom{840)}000\phantom{7}\\840\overline{)4872}\\\end{array}
Use the 4^{th} digit 2 from dividend 4872
\begin{array}{l}\phantom{840)}0005\phantom{8}\\840\overline{)4872}\\\phantom{840)}\underline{\phantom{}4200\phantom{}}\\\phantom{840)9}672\\\end{array}
Find closest multiple of 840 to 4872. We see that 5 \times 840 = 4200 is the nearest. Now subtract 4200 from 4872 to get reminder 672. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }672
Since 672 is less than 840, stop the division. The reminder is 672. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}