Evaluate
\frac{487}{17}\approx 28.647058824
Factor
\frac{487}{17} = 28\frac{11}{17} = 28.647058823529413
Share
Copied to clipboard
\begin{array}{l}\phantom{17)}\phantom{1}\\17\overline{)487}\\\end{array}
Use the 1^{st} digit 4 from dividend 487
\begin{array}{l}\phantom{17)}0\phantom{2}\\17\overline{)487}\\\end{array}
Since 4 is less than 17, use the next digit 8 from dividend 487 and add 0 to the quotient
\begin{array}{l}\phantom{17)}0\phantom{3}\\17\overline{)487}\\\end{array}
Use the 2^{nd} digit 8 from dividend 487
\begin{array}{l}\phantom{17)}02\phantom{4}\\17\overline{)487}\\\phantom{17)}\underline{\phantom{}34\phantom{9}}\\\phantom{17)}14\\\end{array}
Find closest multiple of 17 to 48. We see that 2 \times 17 = 34 is the nearest. Now subtract 34 from 48 to get reminder 14. Add 2 to quotient.
\begin{array}{l}\phantom{17)}02\phantom{5}\\17\overline{)487}\\\phantom{17)}\underline{\phantom{}34\phantom{9}}\\\phantom{17)}147\\\end{array}
Use the 3^{rd} digit 7 from dividend 487
\begin{array}{l}\phantom{17)}028\phantom{6}\\17\overline{)487}\\\phantom{17)}\underline{\phantom{}34\phantom{9}}\\\phantom{17)}147\\\phantom{17)}\underline{\phantom{}136\phantom{}}\\\phantom{17)9}11\\\end{array}
Find closest multiple of 17 to 147. We see that 8 \times 17 = 136 is the nearest. Now subtract 136 from 147 to get reminder 11. Add 8 to quotient.
\text{Quotient: }28 \text{Reminder: }11
Since 11 is less than 17, stop the division. The reminder is 11. The topmost line 028 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}