Evaluate
384
Factor
2^{7}\times 3
Share
Copied to clipboard
\begin{array}{l}\phantom{125)}\phantom{1}\\125\overline{)48000}\\\end{array}
Use the 1^{st} digit 4 from dividend 48000
\begin{array}{l}\phantom{125)}0\phantom{2}\\125\overline{)48000}\\\end{array}
Since 4 is less than 125, use the next digit 8 from dividend 48000 and add 0 to the quotient
\begin{array}{l}\phantom{125)}0\phantom{3}\\125\overline{)48000}\\\end{array}
Use the 2^{nd} digit 8 from dividend 48000
\begin{array}{l}\phantom{125)}00\phantom{4}\\125\overline{)48000}\\\end{array}
Since 48 is less than 125, use the next digit 0 from dividend 48000 and add 0 to the quotient
\begin{array}{l}\phantom{125)}00\phantom{5}\\125\overline{)48000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 48000
\begin{array}{l}\phantom{125)}003\phantom{6}\\125\overline{)48000}\\\phantom{125)}\underline{\phantom{}375\phantom{99}}\\\phantom{125)}105\\\end{array}
Find closest multiple of 125 to 480. We see that 3 \times 125 = 375 is the nearest. Now subtract 375 from 480 to get reminder 105. Add 3 to quotient.
\begin{array}{l}\phantom{125)}003\phantom{7}\\125\overline{)48000}\\\phantom{125)}\underline{\phantom{}375\phantom{99}}\\\phantom{125)}1050\\\end{array}
Use the 4^{th} digit 0 from dividend 48000
\begin{array}{l}\phantom{125)}0038\phantom{8}\\125\overline{)48000}\\\phantom{125)}\underline{\phantom{}375\phantom{99}}\\\phantom{125)}1050\\\phantom{125)}\underline{\phantom{}1000\phantom{9}}\\\phantom{125)99}50\\\end{array}
Find closest multiple of 125 to 1050. We see that 8 \times 125 = 1000 is the nearest. Now subtract 1000 from 1050 to get reminder 50. Add 8 to quotient.
\begin{array}{l}\phantom{125)}0038\phantom{9}\\125\overline{)48000}\\\phantom{125)}\underline{\phantom{}375\phantom{99}}\\\phantom{125)}1050\\\phantom{125)}\underline{\phantom{}1000\phantom{9}}\\\phantom{125)99}500\\\end{array}
Use the 5^{th} digit 0 from dividend 48000
\begin{array}{l}\phantom{125)}00384\phantom{10}\\125\overline{)48000}\\\phantom{125)}\underline{\phantom{}375\phantom{99}}\\\phantom{125)}1050\\\phantom{125)}\underline{\phantom{}1000\phantom{9}}\\\phantom{125)99}500\\\phantom{125)}\underline{\phantom{99}500\phantom{}}\\\phantom{125)99999}0\\\end{array}
Find closest multiple of 125 to 500. We see that 4 \times 125 = 500 is the nearest. Now subtract 500 from 500 to get reminder 0. Add 4 to quotient.
\text{Quotient: }384 \text{Reminder: }0
Since 0 is less than 125, stop the division. The reminder is 0. The topmost line 00384 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 384.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}