Evaluate
\frac{120}{7}\approx 17.142857143
Factor
\frac{2 ^ {3} \cdot 3 \cdot 5}{7} = 17\frac{1}{7} = 17.142857142857142
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)480}\\\end{array}
Use the 1^{st} digit 4 from dividend 480
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)480}\\\end{array}
Since 4 is less than 28, use the next digit 8 from dividend 480 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)480}\\\end{array}
Use the 2^{nd} digit 8 from dividend 480
\begin{array}{l}\phantom{28)}01\phantom{4}\\28\overline{)480}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)}20\\\end{array}
Find closest multiple of 28 to 48. We see that 1 \times 28 = 28 is the nearest. Now subtract 28 from 48 to get reminder 20. Add 1 to quotient.
\begin{array}{l}\phantom{28)}01\phantom{5}\\28\overline{)480}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)}200\\\end{array}
Use the 3^{rd} digit 0 from dividend 480
\begin{array}{l}\phantom{28)}017\phantom{6}\\28\overline{)480}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)}200\\\phantom{28)}\underline{\phantom{}196\phantom{}}\\\phantom{28)99}4\\\end{array}
Find closest multiple of 28 to 200. We see that 7 \times 28 = 196 is the nearest. Now subtract 196 from 200 to get reminder 4. Add 7 to quotient.
\text{Quotient: }17 \text{Reminder: }4
Since 4 is less than 28, stop the division. The reminder is 4. The topmost line 017 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}