Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}=-48
Subtract 48 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-48}{-2}
Divide both sides by -2.
x^{2}=24
Divide -48 by -2 to get 24.
x=2\sqrt{6} x=-2\sqrt{6}
Take the square root of both sides of the equation.
-2x^{2}+48=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-2\right)\times 48}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 0 for b, and 48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-2\right)\times 48}}{2\left(-2\right)}
Square 0.
x=\frac{0±\sqrt{8\times 48}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{0±\sqrt{384}}{2\left(-2\right)}
Multiply 8 times 48.
x=\frac{0±8\sqrt{6}}{2\left(-2\right)}
Take the square root of 384.
x=\frac{0±8\sqrt{6}}{-4}
Multiply 2 times -2.
x=-2\sqrt{6}
Now solve the equation x=\frac{0±8\sqrt{6}}{-4} when ± is plus.
x=2\sqrt{6}
Now solve the equation x=\frac{0±8\sqrt{6}}{-4} when ± is minus.
x=-2\sqrt{6} x=2\sqrt{6}
The equation is now solved.