Solve for x (complex solution)
x=-\frac{\sqrt{233}i}{6}-\frac{4}{3}\approx -1.333333333-2.544056254i
x=\frac{\sqrt{233}i}{6}-\frac{4}{3}\approx -1.333333333+2.544056254i
Graph
Share
Copied to clipboard
48-12x^{2}-147=32x
Multiply 49 and 3 to get 147.
-99-12x^{2}=32x
Subtract 147 from 48 to get -99.
-99-12x^{2}-32x=0
Subtract 32x from both sides.
-12x^{2}-32x-99=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\left(-12\right)\left(-99\right)}}{2\left(-12\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -12 for a, -32 for b, and -99 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-32\right)±\sqrt{1024-4\left(-12\right)\left(-99\right)}}{2\left(-12\right)}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024+48\left(-99\right)}}{2\left(-12\right)}
Multiply -4 times -12.
x=\frac{-\left(-32\right)±\sqrt{1024-4752}}{2\left(-12\right)}
Multiply 48 times -99.
x=\frac{-\left(-32\right)±\sqrt{-3728}}{2\left(-12\right)}
Add 1024 to -4752.
x=\frac{-\left(-32\right)±4\sqrt{233}i}{2\left(-12\right)}
Take the square root of -3728.
x=\frac{32±4\sqrt{233}i}{2\left(-12\right)}
The opposite of -32 is 32.
x=\frac{32±4\sqrt{233}i}{-24}
Multiply 2 times -12.
x=\frac{32+4\sqrt{233}i}{-24}
Now solve the equation x=\frac{32±4\sqrt{233}i}{-24} when ± is plus. Add 32 to 4i\sqrt{233}.
x=-\frac{\sqrt{233}i}{6}-\frac{4}{3}
Divide 32+4i\sqrt{233} by -24.
x=\frac{-4\sqrt{233}i+32}{-24}
Now solve the equation x=\frac{32±4\sqrt{233}i}{-24} when ± is minus. Subtract 4i\sqrt{233} from 32.
x=\frac{\sqrt{233}i}{6}-\frac{4}{3}
Divide 32-4i\sqrt{233} by -24.
x=-\frac{\sqrt{233}i}{6}-\frac{4}{3} x=\frac{\sqrt{233}i}{6}-\frac{4}{3}
The equation is now solved.
48-12x^{2}-147=32x
Multiply 49 and 3 to get 147.
-99-12x^{2}=32x
Subtract 147 from 48 to get -99.
-99-12x^{2}-32x=0
Subtract 32x from both sides.
-12x^{2}-32x=99
Add 99 to both sides. Anything plus zero gives itself.
\frac{-12x^{2}-32x}{-12}=\frac{99}{-12}
Divide both sides by -12.
x^{2}+\left(-\frac{32}{-12}\right)x=\frac{99}{-12}
Dividing by -12 undoes the multiplication by -12.
x^{2}+\frac{8}{3}x=\frac{99}{-12}
Reduce the fraction \frac{-32}{-12} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{8}{3}x=-\frac{33}{4}
Reduce the fraction \frac{99}{-12} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=-\frac{33}{4}+\left(\frac{4}{3}\right)^{2}
Divide \frac{8}{3}, the coefficient of the x term, by 2 to get \frac{4}{3}. Then add the square of \frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{8}{3}x+\frac{16}{9}=-\frac{33}{4}+\frac{16}{9}
Square \frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{8}{3}x+\frac{16}{9}=-\frac{233}{36}
Add -\frac{33}{4} to \frac{16}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{4}{3}\right)^{2}=-\frac{233}{36}
Factor x^{2}+\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{-\frac{233}{36}}
Take the square root of both sides of the equation.
x+\frac{4}{3}=\frac{\sqrt{233}i}{6} x+\frac{4}{3}=-\frac{\sqrt{233}i}{6}
Simplify.
x=\frac{\sqrt{233}i}{6}-\frac{4}{3} x=-\frac{\sqrt{233}i}{6}-\frac{4}{3}
Subtract \frac{4}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}