Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

48x^{2}-32x-1=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 48\left(-1\right)}}{2\times 48}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 48 for a, -32 for b, and -1 for c in the quadratic formula.
x=\frac{32±8\sqrt{19}}{96}
Do the calculations.
x=\frac{\sqrt{19}}{12}+\frac{1}{3} x=-\frac{\sqrt{19}}{12}+\frac{1}{3}
Solve the equation x=\frac{32±8\sqrt{19}}{96} when ± is plus and when ± is minus.
48\left(x-\left(\frac{\sqrt{19}}{12}+\frac{1}{3}\right)\right)\left(x-\left(-\frac{\sqrt{19}}{12}+\frac{1}{3}\right)\right)\leq 0
Rewrite the inequality by using the obtained solutions.
x-\left(\frac{\sqrt{19}}{12}+\frac{1}{3}\right)\geq 0 x-\left(-\frac{\sqrt{19}}{12}+\frac{1}{3}\right)\leq 0
For the product to be ≤0, one of the values x-\left(\frac{\sqrt{19}}{12}+\frac{1}{3}\right) and x-\left(-\frac{\sqrt{19}}{12}+\frac{1}{3}\right) has to be ≥0 and the other has to be ≤0. Consider the case when x-\left(\frac{\sqrt{19}}{12}+\frac{1}{3}\right)\geq 0 and x-\left(-\frac{\sqrt{19}}{12}+\frac{1}{3}\right)\leq 0.
x\in \emptyset
This is false for any x.
x-\left(-\frac{\sqrt{19}}{12}+\frac{1}{3}\right)\geq 0 x-\left(\frac{\sqrt{19}}{12}+\frac{1}{3}\right)\leq 0
Consider the case when x-\left(\frac{\sqrt{19}}{12}+\frac{1}{3}\right)\leq 0 and x-\left(-\frac{\sqrt{19}}{12}+\frac{1}{3}\right)\geq 0.
x\in \begin{bmatrix}-\frac{\sqrt{19}}{12}+\frac{1}{3},\frac{\sqrt{19}}{12}+\frac{1}{3}\end{bmatrix}
The solution satisfying both inequalities is x\in \left[-\frac{\sqrt{19}}{12}+\frac{1}{3},\frac{\sqrt{19}}{12}+\frac{1}{3}\right].
x\in \begin{bmatrix}-\frac{\sqrt{19}}{12}+\frac{1}{3},\frac{\sqrt{19}}{12}+\frac{1}{3}\end{bmatrix}
The final solution is the union of the obtained solutions.