Solve for x
x=3\sqrt{13}-\frac{15}{2}\approx 3.316653826
x=-3\sqrt{13}-\frac{15}{2}\approx -18.316653826
Graph
Share
Copied to clipboard
48x^{2}+720x-2916=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-720±\sqrt{720^{2}-4\times 48\left(-2916\right)}}{2\times 48}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 48 for a, 720 for b, and -2916 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-720±\sqrt{518400-4\times 48\left(-2916\right)}}{2\times 48}
Square 720.
x=\frac{-720±\sqrt{518400-192\left(-2916\right)}}{2\times 48}
Multiply -4 times 48.
x=\frac{-720±\sqrt{518400+559872}}{2\times 48}
Multiply -192 times -2916.
x=\frac{-720±\sqrt{1078272}}{2\times 48}
Add 518400 to 559872.
x=\frac{-720±288\sqrt{13}}{2\times 48}
Take the square root of 1078272.
x=\frac{-720±288\sqrt{13}}{96}
Multiply 2 times 48.
x=\frac{288\sqrt{13}-720}{96}
Now solve the equation x=\frac{-720±288\sqrt{13}}{96} when ± is plus. Add -720 to 288\sqrt{13}.
x=3\sqrt{13}-\frac{15}{2}
Divide -720+288\sqrt{13} by 96.
x=\frac{-288\sqrt{13}-720}{96}
Now solve the equation x=\frac{-720±288\sqrt{13}}{96} when ± is minus. Subtract 288\sqrt{13} from -720.
x=-3\sqrt{13}-\frac{15}{2}
Divide -720-288\sqrt{13} by 96.
x=3\sqrt{13}-\frac{15}{2} x=-3\sqrt{13}-\frac{15}{2}
The equation is now solved.
48x^{2}+720x-2916=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
48x^{2}+720x-2916-\left(-2916\right)=-\left(-2916\right)
Add 2916 to both sides of the equation.
48x^{2}+720x=-\left(-2916\right)
Subtracting -2916 from itself leaves 0.
48x^{2}+720x=2916
Subtract -2916 from 0.
\frac{48x^{2}+720x}{48}=\frac{2916}{48}
Divide both sides by 48.
x^{2}+\frac{720}{48}x=\frac{2916}{48}
Dividing by 48 undoes the multiplication by 48.
x^{2}+15x=\frac{2916}{48}
Divide 720 by 48.
x^{2}+15x=\frac{243}{4}
Reduce the fraction \frac{2916}{48} to lowest terms by extracting and canceling out 12.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=\frac{243}{4}+\left(\frac{15}{2}\right)^{2}
Divide 15, the coefficient of the x term, by 2 to get \frac{15}{2}. Then add the square of \frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+15x+\frac{225}{4}=\frac{243+225}{4}
Square \frac{15}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+15x+\frac{225}{4}=117
Add \frac{243}{4} to \frac{225}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{15}{2}\right)^{2}=117
Factor x^{2}+15x+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{117}
Take the square root of both sides of the equation.
x+\frac{15}{2}=3\sqrt{13} x+\frac{15}{2}=-3\sqrt{13}
Simplify.
x=3\sqrt{13}-\frac{15}{2} x=-3\sqrt{13}-\frac{15}{2}
Subtract \frac{15}{2} from both sides of the equation.
x ^ 2 +15x -\frac{243}{4} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 48
r + s = -15 rs = -\frac{243}{4}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{15}{2} - u s = -\frac{15}{2} + u
Two numbers r and s sum up to -15 exactly when the average of the two numbers is \frac{1}{2}*-15 = -\frac{15}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{15}{2} - u) (-\frac{15}{2} + u) = -\frac{243}{4}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{243}{4}
\frac{225}{4} - u^2 = -\frac{243}{4}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{243}{4}-\frac{225}{4} = -117
Simplify the expression by subtracting \frac{225}{4} on both sides
u^2 = 117 u = \pm\sqrt{117} = \pm \sqrt{117}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{15}{2} - \sqrt{117} = -18.317 s = -\frac{15}{2} + \sqrt{117} = 3.317
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}