Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

48x^{2}+24x-1=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-24±\sqrt{24^{2}-4\times 48\left(-1\right)}}{2\times 48}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 48 for a, 24 for b, and -1 for c in the quadratic formula.
x=\frac{-24±16\sqrt{3}}{96}
Do the calculations.
x=\frac{\sqrt{3}}{6}-\frac{1}{4} x=-\frac{\sqrt{3}}{6}-\frac{1}{4}
Solve the equation x=\frac{-24±16\sqrt{3}}{96} when ± is plus and when ± is minus.
48\left(x-\left(\frac{\sqrt{3}}{6}-\frac{1}{4}\right)\right)\left(x-\left(-\frac{\sqrt{3}}{6}-\frac{1}{4}\right)\right)\geq 0
Rewrite the inequality by using the obtained solutions.
x-\left(\frac{\sqrt{3}}{6}-\frac{1}{4}\right)\leq 0 x-\left(-\frac{\sqrt{3}}{6}-\frac{1}{4}\right)\leq 0
For the product to be ≥0, x-\left(\frac{\sqrt{3}}{6}-\frac{1}{4}\right) and x-\left(-\frac{\sqrt{3}}{6}-\frac{1}{4}\right) have to be both ≤0 or both ≥0. Consider the case when x-\left(\frac{\sqrt{3}}{6}-\frac{1}{4}\right) and x-\left(-\frac{\sqrt{3}}{6}-\frac{1}{4}\right) are both ≤0.
x\leq -\frac{\sqrt{3}}{6}-\frac{1}{4}
The solution satisfying both inequalities is x\leq -\frac{\sqrt{3}}{6}-\frac{1}{4}.
x-\left(-\frac{\sqrt{3}}{6}-\frac{1}{4}\right)\geq 0 x-\left(\frac{\sqrt{3}}{6}-\frac{1}{4}\right)\geq 0
Consider the case when x-\left(\frac{\sqrt{3}}{6}-\frac{1}{4}\right) and x-\left(-\frac{\sqrt{3}}{6}-\frac{1}{4}\right) are both ≥0.
x\geq \frac{\sqrt{3}}{6}-\frac{1}{4}
The solution satisfying both inequalities is x\geq \frac{\sqrt{3}}{6}-\frac{1}{4}.
x\leq -\frac{\sqrt{3}}{6}-\frac{1}{4}\text{; }x\geq \frac{\sqrt{3}}{6}-\frac{1}{4}
The final solution is the union of the obtained solutions.