Evaluate
\frac{24}{7}\approx 3.428571429
Factor
\frac{2 ^ {3} \cdot 3}{7} = 3\frac{3}{7} = 3.4285714285714284
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)48}\\\end{array}
Use the 1^{st} digit 4 from dividend 48
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)48}\\\end{array}
Since 4 is less than 14, use the next digit 8 from dividend 48 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)48}\\\end{array}
Use the 2^{nd} digit 8 from dividend 48
\begin{array}{l}\phantom{14)}03\phantom{4}\\14\overline{)48}\\\phantom{14)}\underline{\phantom{}42\phantom{}}\\\phantom{14)9}6\\\end{array}
Find closest multiple of 14 to 48. We see that 3 \times 14 = 42 is the nearest. Now subtract 42 from 48 to get reminder 6. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }6
Since 6 is less than 14, stop the division. The reminder is 6. The topmost line 03 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}