Factor
-\left(x-12\right)\left(x+4\right)
Evaluate
-\left(x-12\right)\left(x+4\right)
Graph
Share
Copied to clipboard
-x^{2}+8x+48
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=8 ab=-48=-48
Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx+48. To find a and b, set up a system to be solved.
-1,48 -2,24 -3,16 -4,12 -6,8
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -48.
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
Calculate the sum for each pair.
a=12 b=-4
The solution is the pair that gives sum 8.
\left(-x^{2}+12x\right)+\left(-4x+48\right)
Rewrite -x^{2}+8x+48 as \left(-x^{2}+12x\right)+\left(-4x+48\right).
-x\left(x-12\right)-4\left(x-12\right)
Factor out -x in the first and -4 in the second group.
\left(x-12\right)\left(-x-4\right)
Factor out common term x-12 by using distributive property.
-x^{2}+8x+48=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\left(-1\right)\times 48}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{64-4\left(-1\right)\times 48}}{2\left(-1\right)}
Square 8.
x=\frac{-8±\sqrt{64+4\times 48}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-8±\sqrt{64+192}}{2\left(-1\right)}
Multiply 4 times 48.
x=\frac{-8±\sqrt{256}}{2\left(-1\right)}
Add 64 to 192.
x=\frac{-8±16}{2\left(-1\right)}
Take the square root of 256.
x=\frac{-8±16}{-2}
Multiply 2 times -1.
x=\frac{8}{-2}
Now solve the equation x=\frac{-8±16}{-2} when ± is plus. Add -8 to 16.
x=-4
Divide 8 by -2.
x=-\frac{24}{-2}
Now solve the equation x=\frac{-8±16}{-2} when ± is minus. Subtract 16 from -8.
x=12
Divide -24 by -2.
-x^{2}+8x+48=-\left(x-\left(-4\right)\right)\left(x-12\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -4 for x_{1} and 12 for x_{2}.
-x^{2}+8x+48=-\left(x+4\right)\left(x-12\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}