Evaluate
\frac{5}{4}=1.25
Factor
\frac{5}{2 ^ {2}} = 1\frac{1}{4} = 1.25
Share
Copied to clipboard
\begin{array}{l}\phantom{380)}\phantom{1}\\380\overline{)475}\\\end{array}
Use the 1^{st} digit 4 from dividend 475
\begin{array}{l}\phantom{380)}0\phantom{2}\\380\overline{)475}\\\end{array}
Since 4 is less than 380, use the next digit 7 from dividend 475 and add 0 to the quotient
\begin{array}{l}\phantom{380)}0\phantom{3}\\380\overline{)475}\\\end{array}
Use the 2^{nd} digit 7 from dividend 475
\begin{array}{l}\phantom{380)}00\phantom{4}\\380\overline{)475}\\\end{array}
Since 47 is less than 380, use the next digit 5 from dividend 475 and add 0 to the quotient
\begin{array}{l}\phantom{380)}00\phantom{5}\\380\overline{)475}\\\end{array}
Use the 3^{rd} digit 5 from dividend 475
\begin{array}{l}\phantom{380)}001\phantom{6}\\380\overline{)475}\\\phantom{380)}\underline{\phantom{}380\phantom{}}\\\phantom{380)9}95\\\end{array}
Find closest multiple of 380 to 475. We see that 1 \times 380 = 380 is the nearest. Now subtract 380 from 475 to get reminder 95. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }95
Since 95 is less than 380, stop the division. The reminder is 95. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}