Evaluate
25
Factor
5^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{19)}\phantom{1}\\19\overline{)475}\\\end{array}
Use the 1^{st} digit 4 from dividend 475
\begin{array}{l}\phantom{19)}0\phantom{2}\\19\overline{)475}\\\end{array}
Since 4 is less than 19, use the next digit 7 from dividend 475 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0\phantom{3}\\19\overline{)475}\\\end{array}
Use the 2^{nd} digit 7 from dividend 475
\begin{array}{l}\phantom{19)}02\phantom{4}\\19\overline{)475}\\\phantom{19)}\underline{\phantom{}38\phantom{9}}\\\phantom{19)9}9\\\end{array}
Find closest multiple of 19 to 47. We see that 2 \times 19 = 38 is the nearest. Now subtract 38 from 47 to get reminder 9. Add 2 to quotient.
\begin{array}{l}\phantom{19)}02\phantom{5}\\19\overline{)475}\\\phantom{19)}\underline{\phantom{}38\phantom{9}}\\\phantom{19)9}95\\\end{array}
Use the 3^{rd} digit 5 from dividend 475
\begin{array}{l}\phantom{19)}025\phantom{6}\\19\overline{)475}\\\phantom{19)}\underline{\phantom{}38\phantom{9}}\\\phantom{19)9}95\\\phantom{19)}\underline{\phantom{9}95\phantom{}}\\\phantom{19)999}0\\\end{array}
Find closest multiple of 19 to 95. We see that 5 \times 19 = 95 is the nearest. Now subtract 95 from 95 to get reminder 0. Add 5 to quotient.
\text{Quotient: }25 \text{Reminder: }0
Since 0 is less than 19, stop the division. The reminder is 0. The topmost line 025 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}