Evaluate
3
Factor
3
Share
Copied to clipboard
\begin{array}{l}\phantom{1570)}\phantom{1}\\1570\overline{)4710}\\\end{array}
Use the 1^{st} digit 4 from dividend 4710
\begin{array}{l}\phantom{1570)}0\phantom{2}\\1570\overline{)4710}\\\end{array}
Since 4 is less than 1570, use the next digit 7 from dividend 4710 and add 0 to the quotient
\begin{array}{l}\phantom{1570)}0\phantom{3}\\1570\overline{)4710}\\\end{array}
Use the 2^{nd} digit 7 from dividend 4710
\begin{array}{l}\phantom{1570)}00\phantom{4}\\1570\overline{)4710}\\\end{array}
Since 47 is less than 1570, use the next digit 1 from dividend 4710 and add 0 to the quotient
\begin{array}{l}\phantom{1570)}00\phantom{5}\\1570\overline{)4710}\\\end{array}
Use the 3^{rd} digit 1 from dividend 4710
\begin{array}{l}\phantom{1570)}000\phantom{6}\\1570\overline{)4710}\\\end{array}
Since 471 is less than 1570, use the next digit 0 from dividend 4710 and add 0 to the quotient
\begin{array}{l}\phantom{1570)}000\phantom{7}\\1570\overline{)4710}\\\end{array}
Use the 4^{th} digit 0 from dividend 4710
\begin{array}{l}\phantom{1570)}0003\phantom{8}\\1570\overline{)4710}\\\phantom{1570)}\underline{\phantom{}4710\phantom{}}\\\phantom{1570)9999}0\\\end{array}
Find closest multiple of 1570 to 4710. We see that 3 \times 1570 = 4710 is the nearest. Now subtract 4710 from 4710 to get reminder 0. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }0
Since 0 is less than 1570, stop the division. The reminder is 0. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}