Evaluate
\frac{471}{160}=2.94375
Factor
\frac{3 \cdot 157}{2 ^ {5} \cdot 5} = 2\frac{151}{160} = 2.94375
Share
Copied to clipboard
\begin{array}{l}\phantom{160)}\phantom{1}\\160\overline{)471}\\\end{array}
Use the 1^{st} digit 4 from dividend 471
\begin{array}{l}\phantom{160)}0\phantom{2}\\160\overline{)471}\\\end{array}
Since 4 is less than 160, use the next digit 7 from dividend 471 and add 0 to the quotient
\begin{array}{l}\phantom{160)}0\phantom{3}\\160\overline{)471}\\\end{array}
Use the 2^{nd} digit 7 from dividend 471
\begin{array}{l}\phantom{160)}00\phantom{4}\\160\overline{)471}\\\end{array}
Since 47 is less than 160, use the next digit 1 from dividend 471 and add 0 to the quotient
\begin{array}{l}\phantom{160)}00\phantom{5}\\160\overline{)471}\\\end{array}
Use the 3^{rd} digit 1 from dividend 471
\begin{array}{l}\phantom{160)}002\phantom{6}\\160\overline{)471}\\\phantom{160)}\underline{\phantom{}320\phantom{}}\\\phantom{160)}151\\\end{array}
Find closest multiple of 160 to 471. We see that 2 \times 160 = 320 is the nearest. Now subtract 320 from 471 to get reminder 151. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }151
Since 151 is less than 160, stop the division. The reminder is 151. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}