Evaluate
\frac{47}{39}\approx 1.205128205
Factor
\frac{47}{3 \cdot 13} = 1\frac{8}{39} = 1.205128205128205
Share
Copied to clipboard
\begin{array}{l}\phantom{39)}\phantom{1}\\39\overline{)47}\\\end{array}
Use the 1^{st} digit 4 from dividend 47
\begin{array}{l}\phantom{39)}0\phantom{2}\\39\overline{)47}\\\end{array}
Since 4 is less than 39, use the next digit 7 from dividend 47 and add 0 to the quotient
\begin{array}{l}\phantom{39)}0\phantom{3}\\39\overline{)47}\\\end{array}
Use the 2^{nd} digit 7 from dividend 47
\begin{array}{l}\phantom{39)}01\phantom{4}\\39\overline{)47}\\\phantom{39)}\underline{\phantom{}39\phantom{}}\\\phantom{39)9}8\\\end{array}
Find closest multiple of 39 to 47. We see that 1 \times 39 = 39 is the nearest. Now subtract 39 from 47 to get reminder 8. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }8
Since 8 is less than 39, stop the division. The reminder is 8. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}