Solve for t
t = \frac{\sqrt{4389} + 73}{10} \approx 13.92495283
t=\frac{73-\sqrt{4389}}{10}\approx 0.67504717
Share
Copied to clipboard
73t-5t^{2}=47
Swap sides so that all variable terms are on the left hand side.
73t-5t^{2}-47=0
Subtract 47 from both sides.
-5t^{2}+73t-47=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-73±\sqrt{73^{2}-4\left(-5\right)\left(-47\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 73 for b, and -47 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-73±\sqrt{5329-4\left(-5\right)\left(-47\right)}}{2\left(-5\right)}
Square 73.
t=\frac{-73±\sqrt{5329+20\left(-47\right)}}{2\left(-5\right)}
Multiply -4 times -5.
t=\frac{-73±\sqrt{5329-940}}{2\left(-5\right)}
Multiply 20 times -47.
t=\frac{-73±\sqrt{4389}}{2\left(-5\right)}
Add 5329 to -940.
t=\frac{-73±\sqrt{4389}}{-10}
Multiply 2 times -5.
t=\frac{\sqrt{4389}-73}{-10}
Now solve the equation t=\frac{-73±\sqrt{4389}}{-10} when ± is plus. Add -73 to \sqrt{4389}.
t=\frac{73-\sqrt{4389}}{10}
Divide -73+\sqrt{4389} by -10.
t=\frac{-\sqrt{4389}-73}{-10}
Now solve the equation t=\frac{-73±\sqrt{4389}}{-10} when ± is minus. Subtract \sqrt{4389} from -73.
t=\frac{\sqrt{4389}+73}{10}
Divide -73-\sqrt{4389} by -10.
t=\frac{73-\sqrt{4389}}{10} t=\frac{\sqrt{4389}+73}{10}
The equation is now solved.
73t-5t^{2}=47
Swap sides so that all variable terms are on the left hand side.
-5t^{2}+73t=47
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5t^{2}+73t}{-5}=\frac{47}{-5}
Divide both sides by -5.
t^{2}+\frac{73}{-5}t=\frac{47}{-5}
Dividing by -5 undoes the multiplication by -5.
t^{2}-\frac{73}{5}t=\frac{47}{-5}
Divide 73 by -5.
t^{2}-\frac{73}{5}t=-\frac{47}{5}
Divide 47 by -5.
t^{2}-\frac{73}{5}t+\left(-\frac{73}{10}\right)^{2}=-\frac{47}{5}+\left(-\frac{73}{10}\right)^{2}
Divide -\frac{73}{5}, the coefficient of the x term, by 2 to get -\frac{73}{10}. Then add the square of -\frac{73}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{73}{5}t+\frac{5329}{100}=-\frac{47}{5}+\frac{5329}{100}
Square -\frac{73}{10} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{73}{5}t+\frac{5329}{100}=\frac{4389}{100}
Add -\frac{47}{5} to \frac{5329}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{73}{10}\right)^{2}=\frac{4389}{100}
Factor t^{2}-\frac{73}{5}t+\frac{5329}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{73}{10}\right)^{2}}=\sqrt{\frac{4389}{100}}
Take the square root of both sides of the equation.
t-\frac{73}{10}=\frac{\sqrt{4389}}{10} t-\frac{73}{10}=-\frac{\sqrt{4389}}{10}
Simplify.
t=\frac{\sqrt{4389}+73}{10} t=\frac{73-\sqrt{4389}}{10}
Add \frac{73}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}