Evaluate
18
Factor
2\times 3^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{26)}\phantom{1}\\26\overline{)468}\\\end{array}
Use the 1^{st} digit 4 from dividend 468
\begin{array}{l}\phantom{26)}0\phantom{2}\\26\overline{)468}\\\end{array}
Since 4 is less than 26, use the next digit 6 from dividend 468 and add 0 to the quotient
\begin{array}{l}\phantom{26)}0\phantom{3}\\26\overline{)468}\\\end{array}
Use the 2^{nd} digit 6 from dividend 468
\begin{array}{l}\phantom{26)}01\phantom{4}\\26\overline{)468}\\\phantom{26)}\underline{\phantom{}26\phantom{9}}\\\phantom{26)}20\\\end{array}
Find closest multiple of 26 to 46. We see that 1 \times 26 = 26 is the nearest. Now subtract 26 from 46 to get reminder 20. Add 1 to quotient.
\begin{array}{l}\phantom{26)}01\phantom{5}\\26\overline{)468}\\\phantom{26)}\underline{\phantom{}26\phantom{9}}\\\phantom{26)}208\\\end{array}
Use the 3^{rd} digit 8 from dividend 468
\begin{array}{l}\phantom{26)}018\phantom{6}\\26\overline{)468}\\\phantom{26)}\underline{\phantom{}26\phantom{9}}\\\phantom{26)}208\\\phantom{26)}\underline{\phantom{}208\phantom{}}\\\phantom{26)999}0\\\end{array}
Find closest multiple of 26 to 208. We see that 8 \times 26 = 208 is the nearest. Now subtract 208 from 208 to get reminder 0. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }0
Since 0 is less than 26, stop the division. The reminder is 0. The topmost line 018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}